Appendix F

Economic Impact Analysis Methodology

Appendix F

Economic Impact Analysis Methodology

A. Limitations and Scope of This Analysis

Landfills vary in size, geometry, deposited waste composition, type of cover, topography, surrounding area geological characteristics, and local climate. These factors and others act in dynamic combination to affect both the rate of landfill gas production and its duration.

Due to the complex interaction of the above-mentioned factors, comprehensive site assessments are performed as a preliminary step in developing a design plan for installation of a landfill gas collection and control system. A site assessment includes on-site measurement and analyses of the above-mentioned factors that influence collection and control system design. ARB staff acknowledges that these steps are critical in designing and implementing a collection and control system. When examining landfills as an entire statewide emission source category, ARB does not have the resources to perform individual site assessments and prepare comprehensive design plans for all of the affected landfills in order to develop cost estimates.

ARB cost estimates are based on average or typical costs for the operations or actions necessary to comply with the proposed regulation, with the caveats and limitations inherent in using average or typical cost information; it is acknowledged that the actual costs to an affected landfill may be lower or higher than estimated, but the total cost to all affected landfills is expected to be consistent with stated estimates.

The individual landfill compliance threshold trigger dates stated in this analysis are generated for cost estimation purposes only and are not intended to indicate actual compliance dates. Actual compliance dates for individual landfills should be determined by the methods specified in the proposed regulation.

It should be noted that this analysis assumes the scenario where the sole compliance control method used is enclosed flare technology. Many landfills, especially larger ones, successfully employ various alternative technologies to use the captured landfill gas to generate energy for use at the landfill or for other purposes. Due to the specialized nature and objectives of these projects and their costs, no attempt was made to include these projects in the cost analysis nor predict the future rate at which landfills operators may choose this compliance option. To the extent that these projects produce a profit, compliance costs may be reduced for those landfill operations that choose this type of compliance option.

The analysis approach method used for this proposed regulation is consistent with methodologies used for other air quality regulations, but differs from the traditional analysis approach typically used in engineering economic analyses. In traditional
engineering economic analyses, analysis methods are used to determine the point at which a selected parameter is maximized while the cost is minimized (highest cost/benefit ratio). This approach is not used in this analysis. For this and other air quality regulations, the setting of air quality standards or levels are primarily based upon technical feasibility determinations and maximizing public health protection, with compliance costs being a secondary concern.

This analysis is an estimate of the incremental cost of the proposed regulation to both businesses (private) and government agencies (local, State, federal, tribal, and military). Incremental costs are the costs (or savings) to an affected landfill resulting from compliance actions required by the proposed regulation. These costs do not include the normal cost of operation ("cost of doing business") encountered without the proposed regulations' requirements.

B. Methodology

Using individual landfill data obtained from the California Integrated Waste Management Board (CIWMB) (CIWMB, 2009), the 218 affected California landfills were separated into two categories, those that are estimated to be subject to reporting requirements only, and those that would be subject to reporting requirements as well as monitoring and possibly control requirements. The data used to determine the appropriate cost category included: waste-in-place (WIP) in tons projected for the year 2020 (target year for emission reductions for this proposed regulation under the AB 32 guidelines), landfill opening and closing (projected if still open) dates, existing control type (if any), local air district location (used to determine appropriate monitoring costs), and design size (acres). Costs for these two categories were calculated separately.

Table F-1 (next page) shows the cost categories and the parameters that place landfills into those categories.

Table F-1. Landfill Cost Categories (with > 450,000 Tons WIP and >= 3.0 MM Btu/hr)

Cost Category	Applicability
Capital (initial)	- Uncontrolled Landfills - Landfills w/ Open Flares
Operation and Maintenance	- Uncontrolled Landfills - Landfills w/ Open Flares
Monitoring	- Controlled Landfills
	- Uncontrolled Landfills
	- Landfills w/ Open Flares
Reporting	- All Affected Landfills

1. Treated as a separate category because these landfills are required to install enclosed flares (with associated costs) by 2018 .

C. Costs to Landfills Subject to Reporting Only Requirements

For the landfills forecast to be subject only to the reporting requirements of the proposed regulation (72 landfills), the costs were determined based on forecast waste-in-place data and calculated annual gas heat capacity. This group of landfills was further divided into two subgroups, those expected to need to file waste-in-place reports only (32 landfills) and those expected to file both report types (40 landfills). Neither subgroup is projected to need to comply with the monitoring requirements nor install gas collection and control systems.

The cost calculations for both the waste-in-place and landfill gas heat input capacity reports are shown on Worksheet 3 (Cost Subtotals) under Items 1 and 2. The labor rates selected are the mean hourly rates from the United States Bureau of Labor Statistics, for the San Francisco-Oakland-Fremont, California area (highest cost area of California) (USDL, 2009a). Since these labor rates are the latest available (May 2007), they are adjusted to year 2008 dollars using Adjustment Factor 1 in Table F-2 on the next page. An adjustment for benefits, etc., is made using Adjustment Factor 2, an assumed 50 percent markup of labor costs to estimate the cost to an employer of an employee (USDL, 2009b). The markup was based on observed labor markup rates of 37 percent to 46 percent for federal, State, and local government employment, as well as for the private sector. The Adjusted Rates are used for hourly labor costs in this analysis.

Table F-2. Adjusted Hourly Labor Rates

Occupation	Unadjusted Rate (\$/hr)	Adjustment Factor 1	Adjustment Factor 2	Adjusted Rate (\$/hr)
Civil Engineer	39.22	1.05	1.5	61.77
Civil Engineering Technician	30.10	1.05	1.5	41.41
Secretaries, Exc. Legal, Medical, and Exec.	27.84	1.05	1.5	43.85

1. These rates are used to calculate the reporting costs.
2. This rate is used to calculate monitoring costs.

For preparation and submittal of both types of reports, it is assumed that the services of both a Civil Engineer and a Secretary will be needed. The waste-in-place reports required by the proposed regulation are also required by CIWMB on a less frequent basis than ARB; it is expected that the same report (with suitable updating) can be submitted to satisfy the waste-in-place requirement.

The per-report cost is used along with the operational status (open or closed/inactive) data for the affected landfills to determine the total reporting cost per landfill and also by owner/operator status (private and government) categories.

D. Costs to Landfills Subject to Reporting, Monitoring, and Control Requirements

Affected landfills in this group are potentially subject to incur compliance costs in all four of the cost categories listed in Table F-1.

Each affected landfill is listed in Worksheet 2 (MSW-Accepting Landfills Forecast to be Subject to Control Requirements); under each listing are four rows, each corresponding to one of the cost categories. (Unit costs are itemized and calculated on Worksheet 3 (Cost Subtotals.)) These rows are used to calculate the cost for that category for the landfill, if it is expected to incur expenses in that category. These calculations are as follows:

First Row: Used to calculate lump-sum and uniform annual payments for capital expenditure for landfills that will: 1) Need to install collection/control systems (landfills with no existing controls or carbon adsorption control), or 2) Those that will need to install enclosed flares (those currently equipped with open flares) by 2018, per the proposed regulation's requirements. Landfills with existing combustion control systems are expected to meet the proposed regulation's control efficiency requirements without incurring any additional costs, so for these landfills this row is blank.

1) Collection and control system costs for landfills with no existing collection and control systems are calculated using the maximum waste footprint (expressed in acres) supplied by CIWMB and multiplied by a per-acre cost (USEPA, 2009). The per-acre
cost is adjusted to year 2008 dollars under Heading 5a (Installation of New Collection and Control System--Capital Cost Landfills) on Worksheet 3 (Cost Subtotals).
2) For landfills that will need to install enclosed flares, the predicted maximum heat input (in MMBtu/hr) is used to look up the appropriate enclosed flare cost information on Worksheet 3 under Heading 4, Upgrade of Existing Collection/Control System--Capital Cost. It should be noted that these costs are approximate, given the instability of material and labor costs, as well as site specific issues such as electrical service costs. It is assumed that none of the landfills with open flares will be able to continue operating them after the year 2018 (though under certain conditions it may be permissible to do so), and that all open flares will be replaced with enclosed flares in the year 2018.

For both control scenarios listed under 1) and 2) above, a 15-year amortization period is assumed, and the costs are expressed as a series of uniform payments starting in the compliance year. These costs are for the design, siting, and initial equipment costs only; annual operation and maintenance costs are discussed in the next section.

Second Row: Used to calculate annual operation and maintenance (O\&M) costs. For landfills that will need to install collection and control systems or upgrade to an enclosed flare, operation and maintenance costs are considered a compliance cost. This is due to the assumption that these costs were either previously not incurred by the landfill or were at a significantly lower level, in the case of open flares. O\&M costs are calculated as the product of the maximum waste footprint of the landfill (expressed in acres) multiplied by a per-acre cost (U.S. EPA, 2009) adjusted to year 2008 dollars. Also included in the total O\&M cost is an allowance (\$25,000/yr) for an annual emissions source test, which is typically required by a local air district as a permit condition.

As with the capital costs discussed in the First Row above, landfills with existing combustion control systems are expected to meet the proposed regulation's control efficiency requirements without incurring any additional O\&M costs, so for these landfills this row is labeled "Existing".

Third Row: This row is used to calculate monitoring costs. Costs for emission monitoring are calculated using the rates on Worksheet 3, under Item 3b, Surface Emissions/Control \& Collection System Monitoring--Cost per Landfill-Acre. Emission monitoring work may be performed by landfill operations staff or outsourced. Due to the lack of data on the current extent of outsourced monitoring work as well as the recognition that the extent may change over time (as landfills decide to outsource the work or bring it in-house, or vice-versa), this analysis assumes that all landfills will perform their own monitoring work, and that the work will be performed by a Civil Engineering Technician (see Table F-2 for hourly rate).

Note that two different per-landfill acre rates are used, one for landfills located in the SCAQMD, and a second for all others. Different rates are used due to the differences in expected compliance actions.

Landfills in the SCAQMD are currently performing surface and collection/control equipment emission monitoring that is substantially equivalent to the requirements of the proposed regulation. Compliance for these SCAQMD landfills also includes landfill surface integrity repair work (landfill cover repairs) to mitigate emissions and meet the emission limits under SCAQMD Rule 1150.1. For these reasons, the additional or incremental cost for monitoring and surface integrity work to comply with the proposed regulation is expected to be significantly less than that for non-SCAQMD landfills.

The monitoring cost rate for non-SCAQMD landfills takes into account an increased amount of monitoring time per acre to meet a more stringent standard than either local air district (non-SCAQMD) or U.S. EPA standards. In addition to a higher monitoring cost rate, a $\$ 50 /$ acre average allowance for increased landfill surface integrity work (landfill cover repairs) is included. This allowance is included to account for increased landfill surface repair work necessary to meet the emission standards of the proposed regulation. It is an assumption based on landfill cover repair cost allowances submitted in selected reviewed landfill closure plans; there are several variables influencing the actual cost, which cannot be predicted with any degree of certainty. These variables include: availability of on-site heavy equipment such as loaders, graders, etc. (availability more common for open landfills); need to contract out surface repair work, i.e., bring in equipment and personnel to do work; availability of fill material; and present and future condition of the landfill cover.

Monitoring costs for all landfills include a one-time, upfront $\$ 48,000$ allowance for purchasing monitoring and related calibration equipment, though it is recognized that many landfills already subject to emission monitoring requirements may already possess monitoring equipment or have contracts in place for monitoring work.

Fourth Row: Used to calculate the reporting costs incurred by a landfill. The same methodology is used as for the landfills in the Reporting Only cost category, please see Section C above for an explanation of the calculation process.

The compliance costs in each of the four categories described above are summed by category at the bottom of Worksheet 2 for all affected landfills and also by ownership status (for businesses and government agencies).

E. Total Cost of Proposed Regulation to Businesses and Government Agencies

The total cost of the proposed regulation (except for enforcement and related costs to ARB) to directly-affected businesses and government agencies is summarized in Worksheet 9 .

Costs to State agencies (other than those related to compliance by affected landfills) are outlined and calculated in Sections 6a through 6e of Worksheet 3 (Cost Subtotals.) These non-landfill related State agency costs are only expected to be incurred by ARB
in activities related to the enforcement, monitoring, compliance, and outreach efforts related to the proposed regulation.

References for Appendix F

CIWMB, 2009. California Integrated Waste Management Board. Solid Waste Information System file downloaded from:
http://www.ciwmb.ca.gov/SWIS/Search.aspx\#DOWNLOAD January 7, 2009.
Ford, 2009. April 21, 2009 e-mail correspondence from Leslie Ford, ARB to Jon Manji, ARB.

Judge, 2009. Personal Communication, Hardip Judge, ARB, to Jon Manji, ARB. April 7, 2009.

Locke, 2009a. April 7, 2009 e-mail correspondence from Tim Locke, John Zink Company, to Jon Manji, ARB.

Locke, 2009b. April 8, 2009 e-mail correspondence from Tim Locke, John Zink Company, to Jon Manji, ARB.

USDL, 2009a. United States Department of Labor, Bureau of Labor Statistics. Occupational Employment Statistics. May 2007 Metropolitan and Nonmetropolitan Area Occupational Employment and Wage Estimates. Website Accessed, March 22, 2009. http://www.bls.gov/oes/2007/may/oes_41860.htm

USDL, 2009b. United States Department of Labor, Bureau of Labor Statistics. News Release: Employer Costs for Employee Compensation--December 2008. USDL: 09-247. March 12, 2009.
U.S. EPA, 2009. United States Environmental Protection Agency, Landfill Methane Outreach Program. LFG Energy Project Development Handbook, Chapter 4, Project Economics and Financing, pg. 4-3. Online Publication: Website Accessed, March 23, 2009. http://epa.gov/Imop/res/pdf/pdh_chapter4.pdf

Worksheet 1				Total Number of CA MSW-Accepting Landfills									
			3/19/2009										
Source: California Integrated Waste Management Board													
Landfill Model CH4 Emissions (April 3, 2008)													
CO	AB	DIS	CIWMB SWIS File Number	Count ${ }^{\text {a }}$	Facility/Site Name	Max. Waste Footprint (acres)	Open Year b	Close Year	1990 WIP (Tons)	2006 WIP (Tons)	2020 WIP (Tons)	Year LFG Capture	"Current" 2006 Control Type
19	SC	SC	19-AK-0084	1	Paramount Dump	17.4	1921	1948	250,000	250,000	250,000	2004	Venting
19	SC	SC	19-AA-0580	1	Blanchard Street Dump	20	1931	1958	250,000	250,000	250,000		
19	SC	SC	$\begin{aligned} & \text { 19-AQ-0005 } \\ & \text { 19-AQ-0014 } \end{aligned}$	2	BKK Carson	300	1948	1959	500,000	500,000	500,000		
37	SD	SD	37-AA-0026		Mission Bay Landfill \#1	115	1952	1959	750,000	750,000	750,000		
19	SC	SC	19-AA-0581	1	Cogen	28	1951	1959	750,000	750,000	750,000		
19	SC	SC	19-AQ-0010	1	Garden Valley 1 and 2	29	1932	1959	3,000,000	3,000,000	3,000,000		
36	SC	SC	36-CR-0059	1	Waterman LF	24	1933	1960	300,000	300,000	300,000	2006	Combustion
30	SC	SC	$\begin{aligned} & 30-A B-0356 \\ & 30-A B-0359 \end{aligned}$	2	Longsdon Pit	12	1957	1960	400,000	400,000	400,000		
19	SC	SC	19-AK-5004	1	City Dump \& Salvage 2	8	1934	1961	75,000	75,000	75,000	2004	Venting
19	SC	SC	19-AK-5017	1	City Dump \& Salvage 4	9	1934	1961	80,000	80,000	80,000	2004	Venting
30	SC	SC	30-AB-0166	1	Sparks-Rains LF	18	1934	1961	258,300	258,300	258,300	1999	Combustion
19	SC	SC	19-AR-1199	1	Branford LF	160	1957	1961	435,000	435,000	435,000		
19	SC	SC	19-AK-5003	1	City Dump \& Salvage 1 \& 3	100	1940	1961	1,000,000	1,000,000	1,000,000	1995	Combustion
37	SD	SD	37-AA-0027	1	Hillsborough	16	1935	1962	350,000	350,000	350,000	1996	Combustion
30	SC	SC	30-AB-0014	1	Gothard Street Landfill	11	1956	1962	813,200	813,200	813,200	2000	Venting
37	SD	SD	37-AA-0017	1	Duck Pond	2.5	1936	1963	25,000	25,000	25,000	1996	Combustion
19	SC	SC	19-CR-5517	1	Gaffey St.	17	1955	1963	900,000	900,000	900,000	2000	Carbon
19	SC	SC	19-AA-0778	1	Russell Moe Landfill	20	1937	1964	250,000	250,000	250,000		
30	SC	SC	30-CR-0063	1	Lane Road Disposal Station 21	106	1961	1964	584,000	584,000	584,000		
34	SV	SAC	34-CR-5047	1	Elvas Avenue DS	10	1938	1965	75,000	75,000	75,000		
19	SC	SC	19-AQ-0016	1	Gardena Valley \#6 (Don Kott Ford)	7.7	1938	1965	165,000	165,000	165,000	2000	Combustion
19	SC	SC	19-AR-5036	1	Gregg Pit/Pick-Your-Part	100	1938	1965	500,000	500,000	500,000	1993	Combustion
19	SC	SC	19-AQ-0012	1	Cal Compact/Metro LF	157	1959	1965	3,000,000	3,000,000	3,000,000	2000	Combustion
19	SC	SC	19-AA-5321	1	Torrance Municipal Dump	15	1939	1966	150,000	150,000	150,000		
30	SC	SC	30-CR-0020	1	Villa Park		1962	1966	200,000	200,000	200,000	1996	Combustion
37	SD	SD	37-CR-0088	1	Bell Jr. High/Sweetwater II	9	1939	1966	250,000	250,000	250,000	1994	Combustion
30	SC	SC	30-AB-0168	1	Newport Terrace LF	17	1940	1967	150,000	150,000	150,000	2004	Venting
19	SC	SC	19-AQ-0009	1	Southwest Conservation District LF	24	1941	1968	400,000	400,000	400,000	1995	Combustion
37	SD	SD	37-AO-0009	1	Old San Marcos	24	1941	1968	400,000	400,000	400,000		
42	SCC	SB	42-CR-0015	1	Ballard Canyon	10	1942	1969	50,000	50,000	50,000		
21	SF	BA	21-AA-0047	1	Horst Hanf Landfill/Bayview Park	13.5	1942	1969	50,000	50,000	50,000	2004	Venting
37	SD	SD	37-AK-0006	1	Maxon St.	15	1942	1969	150,000	150,000	150,000	1990	Combustion
37	SD	SD	37-AK-0001	1	Mission Ave. SLF	15	1942	1969	200,000	200,000	200,000	1990	Combustion
30	SC	SC	30-CR-0096	1	Cannery Street Disposal Station \#16	20	1957	1969	496,584	496,584	496,584		
19	SC	SC	19-AR-5068	1	Bishop Canyon LF	45	1966	1969	1,660,000	1,660,000	1,660,000	2004	Venting
19	SC	SC	19-AA-5560	1	Industry Hills Sheraton Resort	101	1960	1969	3,500,000	3,500,000	3,500,000	1990	Combustion
31	SV	PLA	31-AA-0624	1	Rocklin Pit	3.9	1943	1970	10,000	10,000	10,000	2004	Venting
42	SCC	SB	42-CR-0014	1	Santa Ynez Airport LF	10	1943	1970	50,000	50,000	50,000	2006	Combustion
43	SF	BA	43-AN-0011	1	Hellyer Park LF	16	1943	1970	400,000	400,000	400,000	1998	Combustion
34	SV	SAC	34-AA-0023	1	Gerber Road LF	75	1944	1971	460,000	460,000	460,000		
56	SCC	VEN	56-AA-0125	1	Tierra Rejada	25	1945	1972	400,000	400,000	400,000		
41	SF	BA	41-AA-0003	1	Sierra Point	80	1945	1972	400,000	400,000	400,000	2004	Venting

	III	del	,	April	3, 2008)								
CO	AB	DIS	CIWMB SWIS File Number	Count ${ }^{\text {a }}$	Facility/Site Name	Max. Waste Footprint (acres)	Open Year b	Close Year	1990 WIP (Tons)	2006 WIP (Tons)	2020 WIP (Tons)	Year LFG Capture	"Current" 2006 Control Type
9	LT	ED	09-CR-0015	1	Meyers LF	7.4	1946	1973	50,000	50,000	50,000		
34	SV	SAC	34-AA-0016	1	14th Avenue Landfill (East/West Pits)	27	1946	1973	250,000	250,000	250,000	2004	Venting
37	SD	SD	37-AA-0033	1	South Miramar Sanitary Landfill	122	1950	1973	3,000,000	3,000,000	3,000,000	1993	Combustion
37	SD	SD	37-AA-0429	1	Arizona St.	64	1952	1974	2,000,000	2,000,000	2,000,000	1993	Combustion
19	SC	SC	19-AA-0835	1	Sheldon-Arleta	42	1962	1974	5,500,000	5,500,000	5,500,000	1990	Combustion
21	SF	BA	21-AA-0049	1	Hamilton AFB Landfill \#26	20	1948	1975	100,000	100,000	100,000	2004	Venting
37	SD	SD	37-AA-0018	1	Poway	12	1948	1975	165,000	165,000	165,000	1997	Combustion
37	SD	SD	37-AA-0019	1	Gillespie	12	1948	1975	165,000	165,000	165,000	1997	Combustion
19	SC	SC	19-AA-5350	1	City Of Santa Monica LF \#2	15	1948	1975	200,000	200,000	200,000	1999	Carbon
37	SD	SD	37-AA-0434	1	Paradise Park/Sweetwater III	20	1948	1975	200,000	200,000	200,000		
37	SD	SD	37-AH-0002	1	Palomar Airport	70	1962	1975	1,000,000	1,000,000	1,000,000	1995	Combustion
31	SV	PLA	31-AA-0220	1	Lincoln Disposal Site	6.3	1949	1976	50,000	50,000	50,000		
30	SC	SC	30-AB-0366	1	Forster Canyon Landfill	50	1958	1976	1,350,000	1,350,000	1,350,000		
19	SC	SC	19-AA-0011	1	Compton Disposal Site	17.9	1950	1977	200,000	200,000	200,000		
12	NC	NCU	12-AA-0022	1	Table Bluff LF	20	1950	1977	200,000	200,000	200,000		
37	SD	SD	37-AA-0016	1	Encinitas	30	1967	1977	585,000	585,000	585,000	1997	Combustion
37	SD	SD	37-AA-0002	1	Valley Center	25	1951	1978	130,000	130,000	130,000	1998	Combustion
19	SC	SC	19-AA-0587	1	Longden Ave Disposal Site	54	1955	1978	1,000,000	1,000,000	1,000,000	1991	Venting
37	SD	SD	37-AA-0001	1	Jamacha	46	1960	1978	1,800,000	1,800,000	1,800,000	1998	Combustion
19	SC	SC	19-AA-5100	1	City of Duarte LF	17.2	1952	1979	200,000	200,000	200,000	1990	Combustion
36	SC	SC	36-AA-0005	1	Upland LF	34	1952	1979	550,000	550,000	550,000	1993	Combustion
55	MC	TUO	55-AA-0005	1	Sierra Conservation Center	8	1953	1980	50,000	50,000	50,000		
31	MC	PLA	31-AA-0520	1	Meadow Vista LF	15	1965	1980	100,000	100,000	100,000	1997	Combustion
36	SC	SC	36-AA-0312	1	Norton AFB LF	25	1953	1980	250,000	250,000	250,000	2002	Combustion
31	SV	PLA	31-AA-0110	1	Roseville LF	21	1953	1980	300,000	300,000	300,000	2004	Venting
31	SV	PLA	31-AA-0310	1	Auburn Sanitary Landfill	37	1953	1980	375,000	375,000	375,000		
34	SV	SAC	34-AA-0004	1	Elk Grove LF	37	1953	1980	450,000	450,000	450,000	1993	Combustion
31	SV	PLA	31-AA-0140	1	Loomis Landfill	25	1959	1980	500,000	500,000	500,000	1997	Combustion
1	SF	BA	01-AA-0006	1	Davis Street	194	1965	1980	4,800,000	4,800,000	4,800,000	1990	Combustion
19	SC	SC	19-AE-0001	1	Palos Verdes	291	1957	1980	23,600,000	23,600,000	23,600,000	1990	Combustion
19	SC	SC	19-AR-0003	1	Ascon Sanitary LF	62	1960	1981	2,000,000	2,000,000	2,000,000	1995	Combustion
37	SD	SD	37-AA-0022	1	South Chollas	120	1952	1981	3,000,000	3,000,000	3,000,000	1990	Combustion
19	SC	SC	$\begin{aligned} & \text { 19-AA-0821 } \\ & \text { 19-AA-0822 } \\ & \text { 19-AA-0823 } \end{aligned}$	3	Mission Canyon/ Mountaingate	375	1958	1981	26,800,000	26,800,000	26,800,000	1990	Combustion
30	SC	SC	30-AB-0026	1	City Of Huntington Beach Landfill	22	1955	1982	400,000	400,000	400,000	2004	Venting
31	MC	PLA	31-AA-0540	1	Foresthill Sanitary Landfill	4	1956	1983	50,000	50,000	50,000		
10	SJV	SJU	10-AA-0018	1	Rice Road Disposal Site	14.2	1956	1983	350,000	350,000	350,000	1998	Combustion
41	SF	BA	41-AA-0007	1	Junipero Serra Solid Waste DS	9	1956	1983	450,000	450,000	450,000	1991	Combustion
33	SC	SC	33-AA-0002	1	West Riverside	74	1965	1983	1,000,000	1,000,000	1,000,000	1990	Combustion
1	SF	BA	01-AC-0001	1	Berkeley LF/Waterfront Park	90	1960	1983	1,000,000	1,000,000	1,000,000	1990	Combustion
15	SJV	SJU	15-AA-0044	1	Bakersfield	115	1956	1983	2,000,000	2,000,000	2,000,000	2003	Combustion
37	SD	SD	37-AA-0901	1	Box Canyon LF	120	1957	1984	500,000	500,000	500,000		
1	SF	BA	01-AA-0011	1	Albany LF/East Shore Park	60	1964	1984	1,000,000	1,000,000	1,000,000	2000	Combustion
41	SF	BA	$\begin{aligned} & \text { 41-AA-0011 } \\ & \text { 41-AA-0012 } \\ & \hline \end{aligned}$	2	Marsh Road	146	1961	1984	3,500,000	3,500,000	3,500,000	1991	Combustion
19	SC	SC	19-AA-0836	1	Operating Industries (OII) (NPL Site)	190	1948	1984	22,000,000	22,000,000	22,000,000	1995	Combustion
33	SC	SC	33-AA-0001	1	Tequesquite/City of Riverside	120	1958	1985	2,400,000	2,400,000	2,400,000	1995	Combustion
19	SC	SC	19-AR-0006	1	Penrose Pit	72	1960	1985	9,000,000	9,000,000	9,000,000	1990	Combustion
1	SF	BA	01-AA-0001	1	Turk Island Landfill	66	1965	1986	1,200,000	1,200,000	1,200,000	1990	Combustion
33	SC	SC	33-AA-0005	1	Elsinore Landfill		1953	1986	1,900,000	1,900,000	1,900,000	1993	Combustion

	11	el	WMB	April 3	3, 2008)								
CO	AB	DIS	CIWMB SWIS File Number	Count ${ }^{\text {a }}$	Facility/Site Name	Max. Waste Footprint (acres)	Open Year	Close Year	$\begin{aligned} & 1990 \text { WIP } \\ & \text { (Tons) } \end{aligned}$	2006 WIP (Tons)	2020 WIP (Tons)	Year LFG Capture	"Current" 2006 Control Type
19	SC	SC	19-Al-0001	1	Norwalk Dump	13	1959	1986	100,000	563,842	3,135,162	2004	Venting
33	SC	SC	33-AA-0004	1	Corona Disposal Site	95	1961	1986	4,000,000	4,000,000	4,000,000	1990	Combustion
19	SC	SC	19-AA-0819	1	Toyon	90	1957	1986	16,000,000	16,000,000	16,000,000	1990	Combustion
21	SF	BA	21-AA-0003	1	San Quentin Disposal Site	42	1960	1987	500,000	500,000	500,000	2004	Venting
48	SF	BA	48-AA-0001	1	Solano Garbage Company	36	1960	1987	750,000	750,000	750,000		
10	SJV	SJU	10-AA-0005	1	City of Fresno LF	145	1937	1987	4,700,000	4,700,000	4,700,000	2000	Combustion
16	SJV	SJU	16-AA-0011	1	Corcoran LF	21	1961	1988	300,000	300,000	300,000		
40	SCC	SLO	40-AA-0009	1	Camp San Luis Obispo	8	1962	1989	50,000	50,000	50,000		
41	SF	BA	41-AA-0010	1	San Mateo Composting (3rd Ave.)	44	1962	1989	400,000	400,000	400,000		
54	SJV	SJU	54-AA-0002	1	Exeter DS	34	1962	1989	400,000	400,000	400,000		
56	SCC	VEN	56-AA-0004	1	Coastal LF (including Santa Clara LF)	120	1962	1989	4,000,000	4,000,000	4,000,000	1991	Combustion
31	MC	PLA	31-AA-0530	1	Clipper Creek LF	2	1963	1990	10,000	10,000	10,000		
5	MC	CAL	05-AA-0014	1	Red Hill SLF	15	1963	1990	100,000	100,000	100,000		
45	SV	SHA	45-AA-0021	1	Simpson Paper Company	20	1963	1990	400,000	400,000	400,000	2004	Venting
50	SJV	SJU	50-AA-0002	1	Geer Road LF	144	1963	1990	500,000	500,000	500,000	1991	Combustion
10	SJV	SJU	10-AA-0011	1	Sourtheast Regional	67	1970	1990	1,300,000	1,300,000	1,300,000	1998	Combustion
30	SC	SC	30-AB-0017	1	Coyote Canyon SLF	325	1963	1990	27,000,000	27,000,000	27,000,000	1990	Combustion
36	MD	MOJ	36-AA-0318	1	Mountain Pass Mine and Mill	4	1964	1991	20,000	20,000	20,000		
27	NCC	MBU	27-AA-0012	1	Lake San Antonio South Shore LF	5.5	1964	1991	25,000	25,000	25,000		
36	MD	MOJ	36-AA-0039	1	Newberry	4	1964	1991	25,000	25,000	25,000		
56	SCC	VEN	56-AA-0008	1	Pacific Missile TC LF	6	1964	1991	50,000	50,000	50,000		
15	SJV	SJU	15-AA-0056	1	Lebec LF	14.2	1987	1991	59,064	75,000	75,000	2004	Venting
50	SJV	SJU	50-AA-0003	1	Bonzi LF	35	1951	1991	536,258	773,200	966,220	1995	Combustion
19	SC	SC	19-AA-0013	1	Azusa LF (Zone I)	77	1958	1991	4,980,097	5,331,470	7,167,957	1990	Combustion
18	NEP	LAS	18-AA-0003	1	Bieber LF	8	1951	1992	49,815	50,000	50,000		
28	SF	BA	28-AA-0003	1	Berryessa Garbage	7	1951	1992	47,955	50,000	50,000		
31	SV	PLA	31-AA-0120	1	Berry Street Mall LF	13	1965	1992	100,000	100,000	100,000		
48	SV	YS	48-AA-0004	1	Rio Vista	12	1951	1992	92,103	100,000	100,000		
7	SF	BA	07-AA-0003	1	Contra Costa SLF (aka GBF LF)	74	1943	1992	656,050	897,051	897,051	1995	Combustion
15	SJV	SJU	15-AA-0063	1	McFarland-Delano LF	40	1971	1992	918,766	1,000,000	1,000,000	2005	Combustion
15	SJV	SJU	15-AA-0048	1	China Grade SLF	58	1978	1992	1,561,931	2,000,000	2,000,000	2002	Combustion
25	NEP	MOD	25-AA-0002	1	Eagleville	1.56	1966	1993	10,000	10,000	10,000		
25	NEP	MOD	25-AA-0003	1	Fort Bidwell	0.8	1966	1993	10,000	10,000	10,000		
25	NEP	MOD	25-AA-0004	1	Lake City	2.83	1966	1993	10,000	10,000	10,000		
25	NEP	MOD	25-AA-0021	1	Cedarville	2.09	1966	1993	10,000	10,000	10,000		
45	SV	SHA	45-AA-0022	1	Intermountain LF	4	1987	1993	13,466	25,000	25,000		
36	MD	MOJ	36-AA-0062	1	Lucerne Vlly	6	1977	1993	39,582	50,000	50,000		
19	SC	SC	19-AA-0057	1	Pitchess Detention Cntr	15	1975	1993	57,060	75,000	75,000		
36	MD	MOJ	36-AA-0026	1	Oro Grande	5	1966	1993	100,000	100,000	100,000		
49	NC	NS	49-AA-0004	1	Healdsburg	27	1966	1993	400,000	400,000	400,000	1994	Combustion
43	SF	BA	43-AO-0001	1	All Purpose LF	25	1965	1993	1,637,887	2,000,000	2,000,000	1990	Combustion
43	SF	BA	43-AA-0006	1	Shoreline-Mtn. View (Vista)	150	1968	1993	1,973,885	2,000,000	2,000,000	1990	Combustion
47	NEP	SIS	47-AA-0030	1	Cecilville LF	1	1967	1994	10,000	10,000	10,000		
47	NEP	SIS	47-AA-0045	1	Hotelling Gulch LF	3	1967	1994	10,000	10,000	10,000		
47	NEP	SIS	47-AA-0029	1	Kelly Gulch LF	1	1967	1994	10,000	10,000	10,000		
47	NEP	SIS	47-AA-0044	1	Rogers Creek LF	1	1967	1994	10,000	10,000	10,000		
36	MD	MOJ	36-AA-0059	1	Needles Sanitary LF	50	1964	1994	83,646	100,000	100,000		
23	NC	MEN	23-AA-0003	1	Casper Refuse DF	16	1964	1994	136,365	150,000	150,000	2004	Venting
31	MC	PLA	31-AA-0560	1	Eastern Regional LF	36	1978	1994	341,816	500,000	500,000	1994	Combustion
45	SV	SHA	45-AA-0019	1	Redding SLF (Benton)	71	1967	1994	750,000	750,000	750,000	1994	Combustion
44	NCC	MBU	44-AA-0003	1	Ben Lomond WDS	24	1942	1994	580,311	750,000	750,000	1994	Combustion
10	SJV	SJU	10-AA-0025	1	Chestnut Ave DS	32	1969	1994	670,038	1,000,000	1,000,000	1998	Combustion

	11	del	,	April 3	3, 2008)								
CO	AB	DIS	CIWMB SWIS File Number	Count ${ }^{\text {a }}$	Facility/Site Name	Max. Waste Footprint (acres)	Open Year	Close Year	$\begin{aligned} & 1990 \text { WIP } \\ & \text { (Tons) } \end{aligned}$	2006 WIP (Tons)	2020 WIP (Tons)	Year LFG Capture	"Current" 2006 Control Type
41	SF	BA	41-AA-0009	1	Burlingham LF	41	1960	1994	1,000,000	1,000,000	1,000,000	1991	Combustion
39	SJV	SJU	39-AA-0003	1	Harney Lane LF	97	1948	1994	1,902,280	2,000,000	2,000,000	1993	Combustion
43	SF	BA	43-AA-0007	1	Sunnyvale LF	92	1960	1994	1,889,967	2,300,000	2,300,000	1991	Combustion
34	SV	SAC	34-AA-0018	1	Sacramento City LF	130	1960	1994	3,410,394	4,000,000	4,000,000	1991	Combustion
47	NEP	SIS	47-AA-0031	1	Lava Beds LF	1.24	1968	1995	10,000	10,000	10,000		
47	NEP	SIS	47-AA-0019	1	Weed SWDS	6.2	1987	1995	11,144	25,000	25,000		
19	SC	SC	19-AA-0062	1	Two Harbors LF	2	1951	1995	24,975	25,000	25,000		
47	NEP	SIS	47-AA-0035	1	New Tenant SWDS	10	1968	1995	50,000	50,000	50,000		
47	NEP	SIS	47-AA-0001	1	McCloud	12.5	1951	1995	45,733	50,000	50,000		
15	SJV	SJU	15-AA-0051	1	Glennville LF	4	1951	1995	49,238	50,000	50,000		
49	NC	NS	49-AA-0002	1	Annapolis LF	5	1951	1995	64,663	75,000	75,000		
58	SV	FR	58-AA-0002	1	Ponderosa SLF	10	1951	1995	73,069	75,000	75,000		
6	SV	COL	06-AA-0001	1	Evans Rd LF-P1	14	1979	1995	153,269	200,000	200,000		
39	SJV	SJU	39-AA-0005	1	Corral Hollow	43	1983	1995	435,764	750,000	750,000	2003	Combustion
33	SC	SC	33-AA-0008	1	Double Butte DS	100	1973	1995	2,732,052	3,000,000	3,000,000	1994	Combustion
47	NEP	SIS	47-AA-0026	1	Happy Camp SWDS	3.4	1969	1996	10,000	10,000	10,000		
14	GBV	GBU	14-AA-0016	1	Furnace Creek	9.5	1951	1996	42,277	50,000	50,000		
18	NEP	LAS	18-AA-0011	1	Herlong DF	8	1951	1996	47,133	50,000	50,000	1996	Venting
36	MD	MOJ	36-AA-0058	1	Morongo DS	11.55	1982	1996	52,945	100,000	100,000		
36	MD	MOJ	36-AA-0041	1	Trona Angus LF	22	1951	1996	167,271	200,000	200,000		
55	MC	TUO	55-AA-0002	1	Tuolumne Central (Jamestown)	16	1951	1996	650,370	750,000	750,000	1996	Venting
10	SJV	SJU	10-AA-0002	1	Chateau Fresno LF	75	1950	1996	2,132,332	3,800,000	3,800,000	1993	Combustion
56	SCC	VEN	56-AA-0011	1	Bailard LF	120	1989	1996	1,879,583	4,000,000	4,000,000	1991	Combustion
30	SC	SC	30-AB-0018	1	Santiago Canyon SLF	130	1968	1996	8,936,769	13,284,221	13,284,221	1991	Combustion
19	SC	SC	19-AA-0820	1	Lopez Canyon LF	166	1975	1996	14,616,276	19,000,000	19,000,000	1990	Combustion
19	SC	SC	19-AF-0001	1	BKK West Covina (Class I and III LFs)	370	1962	1996	29,126,627	45,800,000	45,800,000	1990	Combustion
18	NEP	LAS	18-AA-0004	1	Madeline DF	1	1970	1997	10,000	10,000	10,000		
18	NEP	LAS	18-AA-0005	1	Ravendale DF	1	1970	1997	10,000	10,000	10,000		
40	SCC	SLO	40-AA-0014	1	California Valley LF	6	1970	1997	25,000	25,000	25,000		
42	SCC	SB	42-AA-0010	1	New Cuyama	5	1970	1997	50,000	50,000	50,000		
23	NC	MEN	23-AA-0008	1	Laytonville LF	7	1951	1997	49,309	50,000	50,000		
36	MD	MOJ	36-AA-0049	1	Baker RDS	10	1951	1997	74,727	75,000	75,000		
58	SV	FR	58-AA-0006	1	Yuba Sutter Disposal Area LF (YSDA)	12	1951	1997	139,306	150,000	150,000		
58	SV	FR	58-AA-0001	1	Beale AFB LF	88	1951	1997	178,392	200,000	200,000	2004	Venting
15	MD	KER	15-AA-0055	1	Kern Valley LF	31	1984	1997	115,494	250,000	250,000	2004	Combustion
23	NC	MEN	23-AA-0021	1	City of Willits DS	18.5	1980	1997	144,672	250,000	250,000	2004	Venting
36	MD	MOJ	36-AA-0061	1	Lenwood-Hinkley	54	1951	1997	194,800	250,000	250,000		
36	MD	MOJ	36-AA-0060	1	Twentynine Palms DS	44.26	1983	1997	140,531	300,000	300,000		
29	MC	NSI	29-AA-0001	1	McCourtney Rd LF	36	1972	1997	943,465	1,000,000	1,000,000	1991	Combustion
33	SS	SC	33-AA-0012	1	Coachella Valley DS	75	1972	1997	1,494,459	2,500,000	2,500,000	2000	Combustion
58	SV	FR	58-AA-0005	1	Yuba Sutter Disposal Inc. LF (YSDI)	33	1967	1997	909,422	2,500,000	2,500,000	1999	Combustion
33	SC	SC	33-AA-0009	1	Mead Valley DS	60	1974	1997	1,315,088	2,528,951	2,528,951	1995	Combustion
37	SD	SD	37-AA-0008	1	San Marcos LF	107	1979	1997	2,483,568	6,000,000	6,000,000	1990	Combustion
36	MD	MOJ	36-AA-0084	1	Echo Gold	7	1971	1998	25,000	25,000	25,000		
54	SJV	SJU	54-AA-0010	1	Balance Rock DS	10	1971	1998	100,000	100,000	100,000		
15	SJV	SJU	15-AA-0047	1	Buttonwillow SLF	8	1951	1998	78,478	100,000	100,000		
21	SF	BA	21-AA-0002	1	West Marin SLF	15	1980	1998	113,958	200,000	200,000		
54	SJV	SJU	54-AA-0001	1	Earlimart DS	16	1951	1998	149,620	200,000	200,000	2005	Combustion
16	SJV	SJU	16-AA-0009	1	Hanford LF	79	1973	1998	1,159,295	1,750,000	1,750,000	2000	Combustion
33	SC	SC	33-AA-0003	1	Highgrove LF	71	1947	1998	1,284,218	3,002,920	3,002,920	1997	Combustion

	11	del	,	April 3	3, 2008)								
CO	AB	DIS	CIWMB SWIS File Number	Count ${ }^{\text {a }}$	Facility/Site Name	Max. Waste Footprint (acres)	Open Year b	Close Year	1990 WIP (Tons)	2006 WIP (Tons)	2020 WIP (Tons)	Year LFG Capture	"Current" 2006 Control Type
34	SV	SAC	34-AA-0007	1	Dixon Pit LF	29.75	1983	1999	42,893	100,000	100,000	2004	Combustion
33	SC	SC	33-AA-0013	1	Anza DS	20	1977	1999	55,456	100,000	100,000		
36	MD	MOJ	36-AA-0047	1	Yermo DS	12	1951	1999	83,254	100,000	100,000		
39	SJV	SJU	39-AA-0002	1	French Camp LF	60	1976	1999	230,325	517,575	517,575		
23	NC	MEN	23-AA-0018	1	South Coast Rd LF	5	1973	2000	28,186	50,000	50,000		
13	SS	IMP	13-AA-0012	1	Pichacho C\&F	14	1951	2000	63,723	101,534	114,633		
28	SF	BA	28-AA-0001	1	American Canyon LF	97	1940	2000	1,667,136	2,500,000	2,500,000	1990	Combustion
19	SC	SC	19-AA-0015	1	Spadra LF	173	1957	2000	10,144,050	17,536,915	17,536,915	1990	Combustion
47	NEP	SIS	47-AA-0027	1	Tulelake SWDS	8.8	1951	2001	52,216	75,172	75,172		
36	MD	MOJ	36-AA-0056	1	Big Bear RDS	26	1988	2001	103,590	450,000	450,000		
42	SCC	SB	42-AA-0011	1	Foxen LF	18.4	1968	2001	430,090	750,000	750,000	2006	Combustion
36	MD	MOJ	36-AA-0050	1	Hesperia RDS	50	1980	2001	432,133	750,000	750,000	2005	Combustion
23	NC	MEN	23-AA-0019	1	City of Ukiah SWDS	40	1967	2001	466,712	750,000	750,000	2004	Venting
36	SC	SC	36-AA-0054	1	Milliken	140	1956	2001	8,339,070	12,011,629	12,011,629	1990	Combustion
55	MC	TUO	55-AA-0001	1	Big Oak Flat LF	5	1972	2002	15,153	25,000	25,000	2002	Venting
54	SJV	SJU	54-AA-0011	1	Kennedy Meadows DS	6	1975	2002	25,000	25,000	25,000		
31	MC	PLA	31-AA-0550	1	Colfax LF	3	1975	2002	25,000	25,000	25,000		
47	NEP	SIS	47-AA-0003	1	Black Butte SWDS	27	1979	2002	67,285	149,564	149,564		
8	NC	NCU	08-AA-0006	1	Crescent City LF	23	1969	2002	270,268	505,963	665,340	2004	Venting
26	GBV	GBU	26-AA-0002	1	Bridgeport SLF	36.5	1951	2003	95,584	100,377	103,036		
27	NCC	MBU	27-AA-0003	1	Lewis Rd. LF	14	1978	2003	236,855	501,122	501,122	1997	Combustion
7	SF	BA	07-AA-0002	1	Acme Sanitary LF	109	1954	2003	6,429,329	7,050,842	7,488,750	1991	Combustion
32	MC	NSI	32-AA-0007	1	Portola LF	8	1951	2004	62,497	75,000	75,000	2004	Venting
27	NCC	MBU	27-AA-0006	1	Jolon Rd LF	24	1979	2004	116,370	200,000	200,000		
36	MD	MOJ	36-AA-0048	1	Apple Valley DS	38	1987	2004	103,544	300,000	300,000		
36	MD	MOJ	36-AA-0044	1	Phelan RDS	30	1983	2004	143,007	300,000	300,000		
3	MC	AMA	03-AA-0001	1	Amador Co. LF	29	1967	2004	401,174	737,602	742,369	2002	Combustion
43	SF	BA	43-AA-0004	1	Pacheco Pass LF	91	1963	2004	862,677	2,064,554	2,581,707	1994	Combustion
33	SS	SC	33-AA-0011	1	Edom Hill DS	148	1967	2004	1,681,856	6,983,228	12,733,398	2001	Combustion
13	SS	IMP	13-AA-0005	1	Ocotillo C\&F	5.3	1951	2005	19,588	25,000	25,006		
45	SV	SHA	45-AA-0058	1	Twin Bridges	21	1981	2005	88,291	200,000	200,000		
13	SS	IMP	13-AA-0008	1	Brawley LF	34.3	1984	2005	122,389	430,327	699,366		
43	SF	BA	43-AN-0007	1	Zanker Rd. LF	47.1	1956	2005	746,341	1,022,263	1,233,861	1995	Combustion
10	SJV	SJU	10-AA-0013	1	Orange Ave.	29	1941	2005	534,399	1,122,053	1,983,341	2006	Combustion
54	SJV	SJU	54-AA-0004	1	Teapot Dome DS	71	1972	2005	679,732	1,646,300	2,810,691	2005	Combustion
1	SF	BA	01-AA-0008	1	Tri-Cities LF	115	1968	2005	4,217,879	9,325,621	14,655,691	1990	Combustion
37	SD	SD	37-AA-0005	1	Ramona LF	46	1969	2006	791,182	1,642,804	2,883,292	1997	Combustion
19	MD	AV	19-AA-0009	1	Antelope Valley	57	1952	2006	269,364	3,743,346	9,607,924	2004	Combustion
36	SC	SC	36-AA-0051	1	Colton LF	82	1964	2006	1,587,376	6,062,952	11,840,853	2001	Combustion
7	SF	BA	07-AA-0001	1	W Contra Costa LF	160	1953	2006	4,483,715	9,410,067	15,665,749	1992	Combustion
36	MD	MOJ	36-AA-0067	1	USMC-29 Palms	38.5	1951	2007	94,772	163,838	273,517		
12	NC	NCU	12-AA-0005	1	Cummings Road LF	38	1969	2007	750,650	1,500,177	1,500,955	1997	Combustion
15	MD	KER	15-AA-0062	1	Tehachapi SLF	32	1973	2007	526,883	1,115,907	2,030,714		
36	MD	MOJ	36-AA-0046	1	Barstow RDS	47	1963	2007	835,445	1,645,120	2,949,622		
19	SC	SC	19-AR-0008	1	Bradley Ave East \& West	171	1959	2007	12,983,834	33,518,023	38,729,613	1990	Combustion
13	SS	IMP	13-AA-0009	1	Niland C\&F	13.9	1951	2008	46,552	51,211	60,735		
15	SJV	SJU	15-AA-0050	1	Arvin SLF	143	1971	2008	1,669,202	3,519,658	3,520,296	2001	Combustion
19	SC	SC	19-AR-0002	1	Sunshine Canyon City (Inactive Unit and Unit 2-I)	289	1958	2008	802,887	2,865,249	11,819,433	1992	Combustion
19	SC	SC	19-AA-0853	1	Sunshine Canyon Extension	215	1996	2008	0	12,656,411	36,856,158	1992	Combustion
24	SJV	SJU	24-AA-0002	1	Billy Wright LF	40	1973	2009	274,746	1,124,901	2,158,303		
27	NCC	MBU	27-AA-0007	1	Crazy Horse LF	72	1960	2009	1,189,474	4,000,135	7,943,988	1993	Combustion
41	SF	BA	41-AA-0008	1	Hillside LF	43	1968	2010	864,199	1,794,183	2,252,899	2002	Combustion

| Landfill Model CH4 Emissions (April 3, 2008) | | |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	11	del	,	April 3	3, 2008)								
CO	AB	DIS	CIWMB SWIS File Number	Count ${ }^{\text {a }}$	Facility/Site Name	Max. Waste Footprint (acres)	Open Year	Close Year	$\begin{aligned} & 1990 \text { WIP } \\ & \text { (Tons) } \end{aligned}$	2006 WIP (Tons)	2020 WIP (Tons)	Year LFG Capture	"Current" 2006 Control Type
43	SF	BA	43-AN-0008	1	Kirby Canyon LF	311	1986	2025	1,775,249	6,608,275	11,149,364	1996	Combustion
40	SCC	SLO	40-AA-0008	1	Chicago Grade	36.25	1986	2026	203,666	920,660	2,305,490	2006	Combustion
54	SJV	SJU	54-AA-0008	1	Woodville DS	153	1970	2026	1,258,544	2,644,186	3,755,863	2004	Combustion
13	SS	IMP	13-AA-0010	1	Hot Spa C\&F	6	1951	2027	45,381	50,699	56,431		
18	NEP	LAS	18-AA-0010	1	Westwood DF	9	1951	2027	38,440	52,494	78,294		
17	LC	LAK	17-AA-0001	1	Eastlake SLF	35	1960	2027	364,723	1,104,817	1,935,182		
15	SJV	SJU	15-AA-0057	1	Shafter-Wasco SLF	135	1972	2027	1,141,979	3,043,121	5,665,322	2002	Combustion
56	SCC	VEN	56-AA-0005	1	Toland Rd. LF	92	1970	2027	675,668	4,692,098	11,982,793	1997	Combustion
25	NEP	MOD	25-AA-0001	1	Alturas	27.5	1984	2028	46,952	100,000	100,000		
18	NEP	LAS	18-AA-0009	1	Bass Hill LF	32	1986	2028	79,828	348,082	737,637		
19	SC	SC	19-AA-0056	1	Calabasas LF	416	1961	2028	13,172,817	22,479,153	31,874,338	1990	Combustion
1	SF	BA	01-AA-0009	1	Altamont LF	443	1980	2028	14,967,744	39,772,442	63,607,251	1990	Combustion
13	SS	IMP	13-AA-0007	1	Palo Verde C\&F	9.4	1951	2029	49,728	50,010	50,132		
10	SJV	SJU	10-AA-0006	1	Coalinga DS	52	1970	2029	270,061	525,688	758,692		
10	SJV	SJU	10-AA-0004	1	Clovis LF	50	1969	2029	454,816	1,102,938	1,934,418	2006	Combustion
33	SC	SC	33-AA-0217	1	El Sobrante SWLF	495	1983	2030	1,619,035	19,711,183	59,173,030	1994	Combustion
40	SCC	SLO	40-AA-0001	1	Paso Robles LF	66	1970	2031	974,622	1,597,969	2,416,280	1997	Combustion
36	SC	SC	36-AA-0017	1	California St. LF	106	1963	2031	760,853	1,627,494	2,670,268	2001	Combustion
10	SJV	SJU	10-AA-0009	1	American Ave.	361	1971	2031	2,260,008	8,990,687	16,983,923	2000	Combustion
19	SC	SC	19-AA-0063	1	US Navy LF (San Clemente Island)	13	1951	2032	35,407	51,662	64,244		
18	NEP	LAS	18-AA-0013	1	Sierra Army Depot	32	1951	2032	78,230	100,000	100,000		
46	MC	NSI	46-AA-0001	1	Loyalton LF	29	1974	2032	37,536	82,007	134,022		
57	SV	YS	57-AA-0004	1	UC Davis LF	53	1974	2032	149,286	325,625	539,213	1996	Combustion
5	MC	CAL	05-AA-0023	1	Rock Creek LF	57	1990	2032	5,326	576,705	1,452,714		
19	SC	SC	19-AA-0061	1	Pebbly Beach	5.6	1982	2033	17,751	56,903	113,846		
33	MD	MOJ	33-AA-0017	1	Blythe DS	78	1969	2033	415,345	795,266	1,190,551	1997	Combustion
20	SJV	SJU	20-AA-0002	1	Fairmead LF	77	1958	2033	661,128	2,309,543	4,781,653	1998	Combustion
39	SJV	SJU	39-AA-0022	1	North County LF	185	1990	2033	94,996	2,161,867	5,090,525		
4	SV	BUT	04-AA-0002	1	Neal RD LF	140	1970	2033	493,221	3,100,082	6,086,556	2002	Combustion
36	SC	SC	36-AA-0055	1	Fontana RDS (Mid-Valley)	408	1958	2033	2,466,265	9,786,714	25,197,761	1995	Combustion
34	SV	SAC	34-AA-0001	1	Kiefer LF	667	1967	2035	4,882,713	17,499,572	30,055,405	1994	Combustion
26	GBV	GBU	26-AA-0003	1	Pumice Valley	20	1951	2036	123,153	150,755	156,182		
31	SV	PLA	31-AA-0210	1	Western Regional LF	231	1980	2036	1,201,867	4,538,046	9,086,821	1993	Combustion
44	NCC	MBU	44-AA-0001	1	City of Santa Cruz LF	57.5	1966	2037	793,897	1,869,373	2,844,784	1991	Combustion
7	SF	BA	07-AA-0032	1	Keller Canyon LF	244	1992	2037	0	7,678,238	22,690,827	1993	Combustion
15	SJV	SJU	15-AA-0052	1	Lost Hills SLF	25	1951	2038	72,069	100,000	100,000		
14	GBV	GBU	14-AA-0004	1	Independence DS	18.42	1951	2038	91,998	104,469	131,998		
15	SJV	SJU	15-AA-0273	1	Bakersfield SLF (Bena)	229	1992	2038	0	4,757,447	13,408,350	2000	Combustion
19	SC	SC	19-AH-0001	1	Whittier- Savage Canyon	132	1963	2039	3,027,749	6,176,012	7,618,193	1993	Combustion
21	SF	BA	21-AA-0001	1	Redwood SLF	195	1958	2039	1,960,908	8,286,636	15,476,521	1990	Combustion
27	NCC	MBU	27-AA-0005	1	Johnson Cnyn LF	80	1976	2043	148,946	993,345	2,254,724	2000	Combustion
24	SJV	SJU	24-AA-0001	1	Hwy 59 DS	255	1972	2043	1,322,411	3,973,714	7,847,858		
32	MC	NSI	32-AA-0009	1	Chester LF	28	1973	2045	27,272	50,221	52,389		
57	SV	YS	57-AA-0001	1	Yolo Co. Central LF	473	1975	2045	2,777,248	5,833,578	9,244,718	1992	Combustion
42	SCC	SB	42-AA-0017	1	Lompoc LF	39	1962	2047	259,256	1,119,417	2,068,142	2002	Combustion
45	SV	SHA	45-AA-0020	1	Anderson LF	165	1976	2049	550,274	2,063,459	4,647,695	2006	Combustion
14	GBV	GBU	14-AA-0007	1	Tecopa DS	9.3	1978	2050	50,000	50,000	50,000		
53	NC	NCU	53-AA-0013	1	Weaverville LF	16.6	1976	2050	85,831	150,000	150,000		
14	GBV	GBU	14-AA-0006	1	Shoshone DS	4.7	1978	2052	25,000	25,000	25,000		
19	SC	SC	19-AA-0040	1	Burbank LF \#3	49	1971	2053	611,532	1,330,610	2,003,218	1995	Combustion
14	GBV	GBU	14-AA-0005	1	Bishop Sunland	69.2	1983	2054	82,061	299,731	597,518		
39	SJV	SJU	39-AA-0004	1	Foothill LF	50	1965	2054	551,014	4,123,926	9,158,468		
36	MD	MOJ	36-AA-0045	1	Victorville RDS	341	1955	2059	1,067,804	4,348,479	10,626,492	2003	Combustion

	II	速	CH4 Emission		2008)								
CO	AB	DIS	CIWMB SWIS File Number	Count ${ }^{\text {a }}$	Facility/Site Name	Max. Waste Footprint (acres)	Open Year b	Close Year	$\begin{aligned} & 1990 \text { WIP } \\ & \text { (Tons) } \end{aligned}$	$\begin{aligned} & 2006 \text { WIP } \\ & \text { (Tons) } \end{aligned}$	$\begin{aligned} & 2020 \text { WIP } \\ & \text { (Tons) } \end{aligned}$	Year LFG Capture	"Current" 2006 Control Type
48	SF	BA	48-AA-0075	1	Potrero Hills	190	1986	2059	574,163	8,521,148	24,710,972	1993	Combustion
6	SV	COL	06-AA-0002	1	Stonyford LF	3.3	1951	2064	9,381	10,788	17,296		
47	NEP	SIS	47-AA-0002	1	Yreka LF	52	1984	2065	65,086	231,038	451,072		
58	SV	FR	58-AA-0011	1	Ostrom Road SLF	225	1995	2066	0	1,663,897	6,125,580	2003	Combustion
30	SC	SC	30-AB-0019	1	Prima Descha SLF	699	1976	2067	12,035,917	21,893,121	36,376,606	1991	Combustion
48	SV	YS	48-AA-0002	1	B \& J Drop Box	260	1964	2070	1,529,609	3,911,141	7,168,617		
22	MC	MPA	22-AA-0001	1	Mariposa Co. SLF	40	1974	2081	149,274	330,547	562,699		
42	SCC	SB	42-AA-0012	1	Vandenburg AFB	172	1978	2084	133,140	340,242	480,687		
27	NCC	MBU	27-AA-0010	1	Monterey Peninsula LF	315	1966	2084	3,981,093	7,517,740	11,570,780	1990	Combustion
14	GBV	GBU	14-AA-0003	1	Lone Pine DS	26.6	1951	2087	69,767	107,801	164,761		
15	SJV	SJU	15-AA-0061	1	Taft SLF	85	1972	2123	568,630	1,083,515	1,644,864	2005	Combustion
26	GBV	GBU	26-AA-0005	1	Chalfant SLF	6.6	1951	2155	49,934	50,000	50,000		
26	GBV	GBU	26-AA-0001	1	Walker SLF	38.4	1951	2162	45,942	50,324	52,343		
37	SD	SD	37-AA-0903	1	Las Pulgas LF	88.7	1979	2184	321,545	833,131	1,486,508		
26	GBV	GBU	26-AA-0006	1	Benton SLF	7.4	1978	2212	77,607	100,000	100,000		
37	SD	SD	37-AA-0902	1	San Onofre LF	31	1951	2257	100,406	151,309	158,618		
36	MD	MOJ	36-AA-0068	1	Fort Irwin	467	1970	2405	137,707	264,636	383,515		
			Total CA MSW Landfills by SWIS \#	372		Landfills by Fa	cility/Site Na		618,564,139	1,231,428,174	1,970,372,763		
${ }^{\text {a }}$ Some facilities are composed of more that one SWIS \# and were evaluated as a single facility for emission inventory and cost analyis purposes.													
${ }^{\text {b }}$ Open Year in Bold Indicates ARB Estimate													

CO AB ${ }^{\text {d }}$		$\begin{gathered} \text { ciwm } \\ \text { sWis File } \\ \text { Number } \end{gathered}$	count ${ }^{\text {a }}$	Facility Site Name	$\underset{\substack{\text { Ownership } \\ \text { Staus }}}{\substack{\text { a }}}$	Max. Footprint (acres) ${ }^{\text {d }}$	$\begin{gathered} \text { Average } \\ \text { Anantal } \\ \text { (ninhar } \end{gathered}$	$\begin{gathered} \text { Open } \\ \text { Year } \end{gathered}$	$\begin{aligned} & \text { close } \\ & \text { Year } \end{aligned}$	1990 WIP(Tons)	2006 WIP	$\begin{gathered} 2020 \text { wip } \\ \substack{\text { (Tons) }} \end{gathered}$	$\begin{gathered} \text { Year } \\ \text { LEG } \\ \text { Captu } \\ \text { cape } \\ \text { re } \end{gathered}$	Updated Control Type (2009) ${ }^{\mathrm{e}}$	$\begin{gathered} \text { Year >o } \\ \text { 400.000 } \\ \text { Tons } \\ \text { Wip } \end{gathered}$	$\begin{aligned} & \text { EHtective } \\ & \text { Yearof } \\ & \text { Control } \\ & \text { Curp } \\ & \text { Critera) } \end{aligned}$	Gas Cheat Gate Calc. Test?$\|$	$\begin{gathered} \text { New } \\ \text { Hardware? } \end{gathered}$		$\begin{aligned} & \text { Gas } \\ & \text { Heat } \\ & \text { Hap. } \\ & \text { Calc } \end{aligned}$	$\begin{aligned} & \text { Final } \\ & \text { Gas } \\ & \text { cheat } \\ & \text { Caac. } \\ & \text { Year } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Max. Gas } \\ \text { Rate } \\ \text { Rat } \\ \text { BTUHR) } \end{gathered}$	Capital Cost of (lump sum)	Annualized Capital Cost ${ }^{\text {c }}$	$\begin{aligned} & \text { Assumed } \\ & \text { Start } \\ & \text { Year tor } \\ & \text { Cap Cost } \\ & \text { Amort. } \end{aligned}$					Analysis Y				
																										$\begin{aligned} & \text { Assumed } \\ & \text { And Year } \\ & \text { for Cap. } \\ & \text { Coss } \\ & \text { Amoot. } \end{aligned}$		$\begin{gathered} \text { Surface } \\ \text { Monitoring \& } \\ \text { Improved } \\ \text { Cover } \\ \text { Maintenance } \\ \text { (Cost/Test) } \end{gathered}$	$\begin{gathered} \text { Annual } \\ \text { Monitoring } \\ \text { Frequency } \end{gathered}$	2010	2011	2012		
																												85,728	4			\$70,912		(exstion
43 SF	BA	43-A0.0001	1	All Pupose LF	Loal Gow.	25	15	1965	1993	1.637 .887	2,000.000	2.000.000	1990	Combusion	1976	2010	Contros $\mathrm{INO}^{\text {cos }}$		Closed	2010	2010	6.7	0	so	2012	2027						so	so	so
																											Exsing	\$2.469	- 4		S57.876	Exsting	Exsting	Exstiog
43 SF	BA	43-AA.0006	1	ShorelineMn. View (Vista)	Loall Gon.	150	17	1968	1993	1,973,885	2.000.000	2.000.000	1990	Combstion	1972	2010	Controls	iNo	Closed	2010	2010	6.0	0	so	2012	2027				\$127		so	so	so
																											Exsing	\$14.814	\square_{4}		\$107,266		${ }_{\text {Exsting }}^{\text {S59.26 }}$	Exsting
33 SJV S		39.AA.0003	1	Hamey Lane LF	Local Gon.	97	17	1948	1994	1,902,280	2.000.000	2.000.000	1993	Combusion	1966	2010	Contros F No				2010	5.8	0		2013	2028				\$127			50	
																											Exsing	\$9.580	${ }_{4}$			\$86.319	$\underbrace{\text { S }}_{\substack{\text { Exssing } \\ \text { S38,319 }}}$	$\underbrace{}_{\substack { \text { Exssing } \\ \begin{subarray}{c}{\text { S38,319 }{ \text { Exssing } \\ \begin{subarray} { c } { \text { S38,319 } } }\end{subarray}}$
19 SC	sc	19.AA.0040	I	Burbank LF \#\#	Loal Gon.	49	19	1971	2053	611,532	1,30,610	2.03,218	${ }^{1995}$	Combustion	1986	2010	Contros SN		Open		${ }^{2033}$	5.8	0	so	2011	${ }^{2026}$				\$127		so	$\$ 0$	
																											Exsing				Exsing	Exsiting	Exsing	Exsifo
																												\$1,195	5 4^{4}	${ }_{\text {S } 52.788}^{5127}$	${ }_{\text {S4,788 }}$	${ }_{\text {S4,788 }}{ }^{\text {S127 }}$		¢4,778
52 SV T	TEH	52-AA.0001	1	Red Buft LF	Loall Gon.	33.6	23	1956	2023	400.561	1.111.250	2.013,981	2005	Combustion	1991	2010		iNo	Open	2023	2023	${ }^{8} 3$	0	so	2012	2027						so	sio	
																											Exsing	\$3,318	${ }^{4} 4$		${ }^{661.273}$	$\underset{\substack{\text { Exisitg } \\ \text { Si32 }}}{\text { Siz }}$		cick
15 MO K	KER	15.AA.0062	1	Tehachapi SLF	Loall Gon.	32	11	1973	2007	526,883	1.115 .907	2030.714		Open Flare	1991	2010	Contos IE	IEnol. Fare	Closed	2010	2010	5.5	\$884,590	\$27,406	2018	2033								
																											\$159,400	\$3,160	4					
42 SCC	SB	42-AA.0017	1	Lompoct LF	Local Gont	39	17	1962	2047	259,256	1,119,417	2.068, 142	2002	Combusion	1994	2010	Contros $\mathrm{IN}^{\text {c }}$		Open	2047	2033	5.5	0	so	2011	${ }^{2026}$				\$127	so	so	so	
																											Exsing				Exsiting	Exsising	Exsiting	Exsiniog
																												${ }^{63,552}$		¢3,407	${ }_{\text {S15,407 }}$	\$15407	\$115.07	\$15407
24 suv Sus	suo	24AA.0002	1	Blly Wright LF	Loall gon.	40	9	1973	2009	274.746	1,124,901	2,158,303			1995	2010	Contros IC	IColl + Cnt.	Closed	2010	2010	6.3	8781,000	\$75.210	2011	2026					$\stackrel{\text { S7270 }}{ }$	$\stackrel{\text { S7,270 }}{ }$		(\%7520
																											\$193.000	\$3,50		53.802	\$193,000	\$1930,00		
41 SF	BA	41-AA-0008	1	Hillide LF	Pivate	${ }^{43}$	${ }^{23}$	1988	2010				202			2010	Contros F No				2010	8.9			2013	2028				\$127				
										864,199	1,794,183	${ }^{2.252,899}$	2002	Combusion	1981	2010	Contios ino				2010	8.9			2013	2028	Exsing	- 3					${ }_{\text {Exsing }}^{\text {So }}$	${ }_{\text {Exssing }}^{\text {So }}$
																												\$4,24		\$127		${ }_{564,987}$	\$16,987	
27 NCC MB		27-AA.0005	1	Jobnson Cnym LF	Local Gon.	80	${ }^{13}$	1976	2043	148.946	993,345	2,254,724	2000	Combustion	1998	2010	Contros ${ }^{\text {do }}$		Open	2043	2033	${ }_{6} 6$	0	so	2011	${ }^{2026}$					so	so	so	so
																											Exsing	\$7901			Exssiil	${ }_{\text {Exising }} 531503$	Exsting	
																														\$127	\$127	\$127	\$127	
43 SF	${ }^{\text {BA }}$	43-AA-0007	1	Sunnvale LF	Loall Gon.	92	15	1960	1994	1.889 .967	2,300,000	2,300,000	1991	Combusion	1973	2010	Contros ino		Closed		2010	7.5	0	so	2012	2027						so	so	
																											Exstin	\$9,086	- 4		\$84,344	Exsios9	Exsting	Exssiog
																														\$127				
40 scc si		40:AA.0008		Chicago Grade	Private	36.25	19	1986	2026	${ }^{203.666}$	920.660	${ }^{23805.490}$	${ }^{2006}$	${ }^{\text {Combustion }}$	1999	2010					2026	6.8	0		2011	${ }^{2026}$	Exsing				Exsing	Exssing	Exssing	${ }_{\text {Exssing }}^{\text {so }}$
																												\$5.580		${ }_{562320}$	S14, 5120	\$14320	S14,320	
36 MD M	MOJ	36-AA-0057	1	Landers DS	Loall Gon.	42	7	1986	2013	201.694	936,992	2.324,132			1998	2010	Contros ic	IColl + Cnnt	Open	2013	2013	6.9	\$818,800	578.350	2012	2027						${ }_{578,850}$	578,850	
																											\$201,400					\$201,400	S201,400	\$201,400
																												\$4,148	\square^{4}	\$127	${ }_{\text {S64.592 }}^{\text {S127 }}$	${ }_{\text {S16.592 }}^{\text {S27 }}$	$\frac{516.592}{\text { S127 }}$	\$16.592
${ }^{3} \mathrm{sc}$	sc	33-AA-0001	1	Tequesquite Clit of Riveside	Loall Gon.	120	11	1958	1985	2400,000	2,40,000	2400,000	1995	Combustion	1963	2010	Contros $\mathrm{T}^{\text {No }}$		Closed		2010	6.3	0	so	2011	2026					so	so	so	
																											Exsing	\$2.226			$\underset{\text { Exsing }}{\text { S11,72 }}$	${ }_{\text {Exssing }}$	$\underset{\text { Exsing }}{\text { S11,72 }}$	$\underset{\text { Exssing }}{\text { Sili, }}$
																														${ }_{\text {S }}^{\text {S } 127}$				
40 scc si		40-AA.0001	1	Paso Fobles LF	Loall Gon.	66	13	1970	${ }^{2031}$	974.62	1.5979 .969	2.416 .280	1997	Combustion	1978	2010						${ }^{6.7}$	0			2027	Exsing							
																											Exsing	\$6.518			574.073			
33 ss	sc	33-AA.0012	1	Coachela Valley DS	Loall Gon.	75	3	1972	1997	$1.494,459$	2,50,000	2.50,000	2000	Combstion	1981	2010	Contros $\mathrm{S}^{\text {No }}$		Closed	2010	2010	9.1	0	so	2011	2026					so	${ }^{\text {so }}$	so	
																												\$1.829	4	\$55,314	Exsting			
58 sv	FR	58-AA-0005	1	Nonn	Pivale	${ }_{3}$	21	1967	1997	909,422	2.500.000	2.500,000	1999	Combusion	1984	2010	Contros T No		Closed	2010	2010	3.9	0	so	2011	2026					so	so	so	so
																											Exsing				Exssing	Exsing	Exsing	
																												83,259		\$61,036	\$13.036	\$13,036		
28 SF	BA	28.AA.0001	1	Ameican Canyon LF	Loall gon.	97	${ }^{21}$	1940	2000	1.667 .136	2.500.000	2.500.000	1990	Combusion	1978	2010	Contros $\mathrm{IN}^{\text {c }}$	INo	Closed	2010	2010	11.5	0	so	2011	2026							Sosios	
																											Exsing	\$9.580			${ }_{\substack{\text { Exsting } \\ \text { S88,319 }}}^{\text {Ster }}$	${ }_{\text {Exsising }}^{\text {S38,319 }}$	Existing $\$ 38,319$	
33 sc	sc	33.AA.0009	1	Mead Valley OS	Local Gow.	60	${ }^{13}$	1974	1997	1.315 .088	2.58, 951	2.58,951	1995	Combusion	1982	2010	Contros INo		Closed		2010	9.4	0	so		${ }^{2026}$				8127		so	so	
																											Exsing	6			Exssing	Exssing	Exsing	
43 SF																														\$127				\$5.851
	BA	43-AA.0004	1	Pacheor Pass LF	Private	91	19	1963	2004	862,677	2.064,554	2.581,707	1994	Combustion	1983	2010	Contros in		Closed	2010	2010	10.2	0	so	2011	2026	Exstina				so	so	so	
																												\$8.987	4	583.949	S35,949	${ }_{\text {Exsting }}^{\text {S35,49 }}$	${ }_{\text {Exsing }}^{\text {S35.49 }}$	
36 sc	sc	36-AA.0017	1	Callomiast LF	Loall Gon.	106	13	1963	2031	760,853	$1.627,494$	2.67,268	2001	Combustion	1983	2010	Contros $\mathrm{IN}^{\text {N }}$		Open	2031	2031	7.6	0	so	2012	2027								
																											Exsiting	\$2.584				Exising	Exsting	Exisiog
54 S.v S																														\$127	${ }^{5127}$	s127	${ }_{5127}$	
	su	54AAA.0004		Teapot Dome DS	Loal Gon.	7	11	1972	2005			2.810.997		Combusion	1985	2010						${ }^{\text {8. }}$	0			2028	Exsing						Exsting	Exsting
																												\$7.012	- 4			S77,048	528.048	528.048
44 NCC	MBU	44AA.0001	1	Cily of Santa Cruz LF	Loall Gon.	57.5	33	1966	2037	793,897	1.869373	2.844 .884	1991	Combusion	1983	2010	Contros ${ }^{\text {do }}$		Open	2037	2033	11.1	0	so	2011	2026					so	so	so	so
																											Exsing	\$5.679	4		${ }_{\substack{\text { Exsting } \\ \text { s22,75 }}}$	Existing	${ }_{\text {Exsting }}$	
																														\$127	\$127	\$127	\$127	
37 sD	so	37-AA.0005	1	RamonalF	Private	${ }^{46}$	15	1969	2006	799,182	1.6428804	2.883,292	1997	Combusion	1981	2010	Contros ino	iNo	Closed	2010	2010	5.0	0	so	2012	2027	Exsiting					so	sin	
																											Exsing	54.543	- 4		\$66.172	Sis.ind	${ }_{\text {Exs }}^{\text {Exing }}$	
35 NCC M		35-AA.0001	1	John Smitit Road SWDS	Loal Gow.	44	13	1968	2024	712,43	$1.667,101$	2.905 .134	1998	Combusion	1981	2010	Contros $\mathrm{S}^{\text {No }}$		Open	2024	2024	8.2	0	so	2011	2026					so	so	so	
																											Exsing	\$4,345	4		$\underset{\substack{\text { Exsting } \\ \text { S17382 }}}{\text { a }}$	$\underset{\substack{\text { Exsting } \\ \text { Si, } 782}}{\text { S }}$		
36 MD M																2010										${ }^{2028}$				\$127	\$127	\$127	${ }_{\text {S127 }}^{57295}$	${ }_{\text {s87, }{ }^{\text {s } 2751}}$
																											\$222.400						s222,400	
																												642				6.567	S18,567	S18,567
37 SD	SD	37-AA.0022	1 s	South Cholas	Local Gont.	120	11	1952	1981	3.000.000	3.000.000	3.000.000	1990	Combusion	1957	2010	Contros F No		Closed	2010	2010	7.1	0	so	2013	2028							so	

CO AB ${ }^{\text {d }}$		$\begin{array}{\|c\|} \text { CIWMB } \\ \text { SWISFile } \\ \text { Number } \end{array}$	count ${ }^{\text {a }}$	Facility Sitie Name	Ownership Status	Max.Waste Footprint (acres) ${ }^{d}$	$\begin{aligned} & \text { Average } \\ & \text { Rantal } \\ & \text { (linch/4r } \end{aligned}$	$\begin{gathered} \text { Open } \\ \text { Year } \end{gathered}$	$\begin{aligned} & \text { close } \\ & \text { Year } \end{aligned}$	1990 WIP(Tons)	2006 WIP(Tons)	$\begin{gathered} 2020 \text { wip } \\ \substack{\text { (Tons) }} \end{gathered}$	$\begin{gathered} \text { Year } \\ \text { LEG } \\ \text { Captu } \\ \text { cape } \\ \text { re } \end{gathered}$	$\begin{gathered} \text { Updated } \\ \text { Control Type } \\ (2009)^{e} \end{gathered}$	$\begin{gathered} \text { Year >o } \\ \text { 40.000 } \\ \text { Tons } \\ \text { Twip } \end{gathered}$	Effective Year of (WIP Criteria)		$\begin{gathered} \text { New } \\ \text { Hardware? } \end{gathered}$		Gas Heat Cap. Calc		Max. Gas Rate (MM BTU/HR)	Capital Cost of (lump sum)		$\begin{aligned} & \text { Assumed } \\ & \text { Start } \\ & \text { Year for } \\ & \text { Cap Cost } \\ & \text { Amort } \end{aligned}$	$\begin{aligned} & \text { Assumed } \begin{array}{c} \text { Asu Mor } \\ \text { End Yoap } \\ \text { for cost } \\ \text { Cmort. } \end{array} \end{aligned}$				A alysis Y		2012			
																													$\begin{gathered} \text { Annual } \\ \text { Monitoring } \\ \text { Frequency } \end{gathered}$	2010	2011				
																												\$11.851	14			595.405	Lexting		
33 sc		33.AA.0008	1	Dowble Bute DS	Local Gont.	100	11	1973	1995	2,732.052	3.00,000	3.000.000	1994	Combstion	1975	2010	Contros 1		Closed	2010	2010	9.8	0	so	2011	2026					${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$	so	${ }_{\text {Exsing }}^{\text {som }}$	
																											Exsing	\$2,438			$\underset{\substack{\text { Exssing } \\ 89.752}}{ }$	Exsting	Exsting	Exsting	
33 sc	sc	33-A4.0003	1	Higharove LF	Local ont.	71	13	1947	1998	1.284,218	$3.002,220$	3.022,220	1997	Combstion	1984	2010	Contros 1	INo	Closed	2010	2010	11.3	0	so	2012	2027						so	so	so	
																											Exsing	\$1,731	1		\$54,924	${ }_{\text {Exsting }}^{\text {S6,24 }}$	Exsting	${ }_{\substack{\text { Exstiog } \\ \text { S6.92 }}}$	
	BA	(1)	2	Massh Road	Local Got.	146	17	1961	1984	3.500.000	3.500.000	3.500.000	1991	Combstion	1963	2010	Contros I				2010	9.2	0		2013	2028				\$127					
$41 \quad \mathrm{SF}$																											Exsing	\$14,419	$9{ }_{4}$			\$105.676		Exssitio	
15 SJV S	suv	15-AA-0050	1	Anvin SLF	Loal Gon.	143	7	1971	2008	1.669,202	3.519,658	3.50,296	2001	Open Flare	1978	2010	Contros 5	IEnc. Fare	Closed		2010	4.0	\$284,590	\$27,406		${ }^{2033}$				\$127					
																											\$622,600	s14123							
54 s.v S		54AA.0008	1	Woodvill DS	Local Gon.	153	11		2026	1,258,544	2.644 .186	3,755,863	2004	Combstion	1978	2010	Contros 1 It		Open	2026	2026	10.7	0	so	2012	2027				\$127		so	so	so	
																											Exsing					Exssing		$\underset{\text { Exssing }}{\text { S6044 }}$	
																												\$15,110	- 4	\$127	$\underset{\substack{\text { S108,441 } \\ \text { S127 }}}{ }$	$\underset{\text { S60.441 }}{\text { S127 }}$	\$60.441	S66.441	
10 SvO	suv	10.A4.0002	1	Chataua Fressolf	Private	75	11	1950	1996	2.132332	3.800.000	3.800.000	1993	Combstion	1979	2010	Contros 1		Closed	2010	2010	21.0	0	so	2013	2028	Exsiting						so		
																											Exsing	87,407	4			577,688			
33 Sc sc	sc	33.AA.0004	1	Corona Disposal Stie	Local Got.	95	${ }^{11}$	1961	${ }^{1986}$	4,000,000	4.000.000	4.000.000	1990	Combstion	1963	2010	Contros		Closed		2010	10.8	0	so	2013	${ }^{2028}$				\$127			so		
																											Exsing						Exssing	Exsing	
																												\$2,316		s127		\$57,264	${ }_{59} 9264$		
56 scc	VEN	56-A4.0004	1	comar	Local oon.	120	15	1962	1989	4.000.000	4.000.000	4.000.000	1991	Combustion	1965	2010	Contros 1	INo	Closed	2010	2010	11.5	0	so	2011	2026					so	so	so	so	
																											Exsing	\$11,851			${ }_{\text {Exssing }}^{\text {S47,05 }}$	$\underset{\text { Exsing }}{\text { S47,05 }}$	$\underset{\substack{\text { Exsting } \\ \text { S47, }{ }^{\text {a }}}}{ }$	$\underset{\substack{\text { Exsitiog } \\ \text { S47,05 }}}{\text { a }}$	
		34AA.0018	1	Sacramento City LF		130	19		199		4000000		199	Combus	1967	2010	Cortos						0	50	2012	2027				\$127					
				Sacramenocily	Local on.	130	19			3,40,394		4.000.000		Combustion	1967	2010			Closed		2010	127	0	80	2012	2027	Exsing					Exssing	Exsing	Exssino	
																												\$12		5127	599,35	\$51,355	\$51, 35		
56 Scc V	ven	56-AA-0011	1	Balardle	Local Gon.	120	15	1989	1996	1.879 .583	4.000.000	4.000.000	1991	Combstion	1988	2010	Contros 1		Closed	2010	2010	16.0	0	so	2013	2028							so		
																											Exssing					s95605	Exsting		
16 S.J																														\$127					
	suv	16-AA-0004	1	Avenal LF	Local con.	123.2	7	1980	2020	341,069	1.1136 .419	4.003.699			1997	2010	Contros 1	\|Coll + Cont	Open	2020	2020	11.6	\$2, 553.480	\$226.640	2011	2026					${ }_{5226.640}^{5540}$	${ }_{\text {S }}^{5226.640}$	${ }_{\text {S }}^{\text {S226.640 }}$	$\underset{\substack{\text { S226.640 } \\ \$ 56240}}{ }$	
																											\$542,40	\$12,167	${ }_{4}$	\$96,669	${ }_{\text {S } 5424.400}^{58.69}$	${ }_{\text {S } 5424.409}^{\text {S4, }}$	$\underset{\$ 8542409}{ }$	$\underset{\substack{8424.40 \\ 54869}}{ }$	
																														\$127	\$127	${ }^{127}$	${ }^{5127}$		
45 SV Sis		45-AA.0043	1	West Central (Phase 2)	Loal Gon.	100	${ }^{37}$		2013	.106,919	2.101.253	4.581,004			1993	2010	Contros ic	\|COIl + Cnn		Open		2013	20.9	\$11915.000	\$1844,45	2012	2027	\$444,000					${ }_{\text {S }}^{\text {S } 1445,4,000}$	${ }_{\text {S }}^{\text {\$1845,4000 }}$	¢184.415
																												999.76	- 4	s127	${ }^{587.504}$	${ }^{533.504}$	${ }_{533.504} 5$	539.504	
45 SV Sis	SHA	45-AA-0020	1	Anderson LF	Privale	165	29	1976	2049	550.274	2.063.459	4.647,695	2006	Combstion	1988	2010	Contros		Open	2049	2033	20.9	0	so	2012	2027						so	so		
																											Exsing					Exsing			
																												\$16,295	$5{ }^{4}$	5127	${ }_{\text {S }}^{\text {S13, } 182}$ S		¢65.182		
10 SJV	suv	10.AA.0005	1	City of fresol LF	Local ont.	145	11	1937	1987	4.700.000	4.700.000	4.700,000	2000	Combustion	1945	2010	Contros 1		Closed		2010	11.5	0	so	2011	2026					so	so	so		
																											Exising	\$14,320			${ }_{\text {Exssing }}^{\text {S57.28 }}$	${ }_{\text {Exssing }}^{\text {S57,28 }}$	Exsting	$\underset{\text { Exsting }}{\text { E57,28 }}$	
																														\$105.817					
13 Ss in		${ }^{13.4 A .0019}$	1	Republic-Imperial	Pivate	${ }^{73}$	${ }^{3}$		2010	${ }^{279.924}$	1.856.219	4.708 .951			1993	2010	Contros 1	\|COII. $\mathrm{Con+1}$.	Closed		2010	13.8	\$11.004700	\$135.273		2027	\$331,600					${ }_{\text {S }}^{\text {S331, } 273}$	${ }_{\text {\$3351.600 }}$	¢	
																												87,209			576.838	528.838	528.838	S28,838	
20 SJV	suv	20-AA-0002	1	Faimead LF	Local Gon.	77	11	1958	2033	661.128	2,30,543	4.781,653	1998	Combusion	1986	2010	Contros		Open	2033	2033	13.8	0	so	2012	2027						Exsing	${ }_{\text {Exsing }}^{\text {Sol }}$		
																											Exsiting	${ }^{87} 605$	$5 \quad 4$		578.418				
54 SJV		54AA.0009	1	Visalia DS	Local Gont.	${ }^{247}$	11	1952	2024	786.444	2,967,91	4.788 .022	2004	Combstion	1987	2010	Contros		Ooen	2024	2024	14.3	0	so	2012	${ }^{2027}$				\$127	\$127	${ }_{\text {S127 }}^{10}$	${ }_{\text {S127 }}$	¢ ${ }_{\text {S127 }}^{80}$	
																											Exsing					Exsing	Exsiting		
																												\$24,394	4	\$127	${ }_{\text {S }}$ \$145.575	${ }_{\text {s97,575 }}^{5127}$	${ }_{5997575} 5$		
1 SF	BA	01-AA.0006	1	Davis Stret	Loal Gon.	194	21	1965	1980	4.800.000	4.800.000	4.800 .000	1990	Combustion	1965	2010	Contros I		Closed	2010	2010	12.5	0	so	2012	2027						so			
																											Exsing	\$19,159	9		\$124,638			Existing $\$ 76,638$	
39 ssv s	suo	39.AA.0022	1	Nooth Count LF	Local Got.	185	17	1990	2033	94,996	2,161,867	5.090.525		Combustion	1993	2010	Contros		Open	2033	2033	15.3	0	so		${ }^{2027}$				\$12		so	so		
																											Exsing					Exsing		Exsting	
																												\$18,271	$1+4$					¢73.022	
50 SJV	suo	50-AA-0001	1	Fink RdLF	Loal Gon.	216	11	1973	2019	706.220	2,793,994	5.158,987	2004	Combstion	1986	2010	Contros 1		Open	2019	2019	15.1	0	so	2011	2026					so	so	so		
																											Exsting	\$21,332			${ }_{\text {Exssing }}^{\text {Sc329 }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exsting }}^{\text {S }}$	Exstip9	
																														\$127	S127	S127	\$127	\$127	
42 ScC	SB	42-AA.0016	1	City of Sana MarialF	Local Gont	245	15	1940	2017	1,217,394	3,247,271	5.338,263	1998	Combusion	1981	2010	Contros in		Open	2017	2017	15.5	0		2011	2026					Exssing				
																											Exsing	\$24,196		\$144,785			(exsing	cexing	
44 NCCO	MBU	44AA.0004	1	Buena Vista ${ }^{\text {S }}$	Loal Gow.	61	${ }^{23}$	1966	2021	1.321 .475	3.250,261	5.4515 .161	1991	Combstion	1977	2010	Contros 1		Open	2021	2021	21.8	0	so	2011	2026					so	${ }_{\text {s }} \mathrm{s}$	so	so	
																											Exsting	\$6,024	4		${ }_{\text {Exsting }}^{\text {E2,097 }}$	${ }_{\text {Exsting }}^{\text {E24,07 }}$			
16 siv s	suo	16.AA.0021	1	Ketleman Rills SLF	Privale	43	7	1998	2023	0	1.685,025	$5.488,215$	2005	Combstion	2000	2010	Contros 1 Io		Open	2023	2023	16.2	0	so	2011	2026				$\$ 127$	${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {s127 }}^{10}$	${ }_{\text {\$127 }}^{\text {so }}$	¢127	
																											Exsing				Exssing	Exsiting	Exsing	Exsing	
																												\$4,247	\square^{4}		${ }_{\text {S }}^{\text {816.987 }}$ S127	${ }_{\text {S16,987 }}^{\text {S127 }}$	$\underset{\text { S16.987 }}{\text { \$127 }}$		
15 SJV	suo	15-AA.0057	1	Shater-Wasco SLF	Loal Gon.	135	7	1972	2027	1,141,979	3,043,121	5.665.322	2002	Combustion	1983	2010	Contros in	ino	Open	2027	2027	6.5	0	so	2012	2027									
																											Exsing	\$11,333	34		\$101.330	$\underbrace{\substack{\text { E332 }}}_{\text {Exsting }}$	$\underset{\text { Exssing }}{\substack{\text { Esi }}}$		
37 SD S	So	37-AA.0008	1	San Marcos LF	Loall Gon.	107	13	1979	1997	2488.568	6.000.000	6.000.000	1990	Combustion	1984	2010	Contros 1		Closed	2010	2010	${ }^{23.4}$	0	so	2012	2027					\$127	${ }_{\text {S127 }}^{50}$	${ }_{5127}^{50}$	${ }_{\text {s } 127}^{50}$	
																											Exsing	\$10,567	${ }_{4}$			$\underset{\substack{\text { Exsting } \\ \text { S42,29 }}}{\text { E }}$	${ }_{\text {Exsting }}^{\text {S4229 }}$		
4 sv Bu																														\$127					
		04AA.0002		Near RolF	Local oon.	140	29	1970	2033	493,221	3.100,082	6.086.556	2002	Combustion	1989	2010			Open		2033	${ }^{27.0}$	0			2026	Exsiting				Exssing	Exssing	Exsing		
																												\$13.826	$6 \quad 4$		${ }_{\text {S55536 }}^{\text {S127 }}$	${ }_{\text {s55536 }}^{\text {S127 }}$	${ }_{\text {S55.306 }}$	¢55.306	
58 sV	FR	58.AA.0011	1	Ostrom Road SLF	Pivale	225	21	1995	2066	0	1.663.897	6.125.580	2003	Open Flare	2001	2010	Contros $\mathrm{S}_{\text {I }}$	IEncl. Fare	Open	2066	2033	30.1	\$370.419	${ }_{\text {S35.671 }}$	2018	2033				\$127	S127	\$127	S127		

2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	Subtotal	Private	Local Govt. State Govt.	Fed Govt.	Tribal Govt.	Military	Subtotal	Private	Local Govt.	State Govt.
	ST5.210	ST7.210	\$175,200	\$75,210	${ }_{\text {S }}^{\text {ST5,210 }}$	ST5.210	${ }_{\text {S }}^{\text {ST5,210 }}$		S75.210	S75,210 $\$ 193,000$	\$193,000	\$193,000	\$193,000		\$193,000	\$193,000			S1,128,155		S1,128,155				\$4,43, 000		\$4,439,000	
\$15,802	\$15,002	\$15.802	\$15.802	\$15,802	\$15.802	\$15.802	\$15,802	${ }_{\text {sis }}$	\$15.002	\$15.802	\$15,802	\$15.802	${ }_{\text {S } 515002}$	\$15.802	\$15.802	\$15.802	\$81.802	\$115,802										
so		so	so	so	so																							
Exsing	Exsting.	Exsing	Exsing	Exsting.	Exsing	Exsing	Exsting	Exsting	Exsting	Exsiting	Exsting	Exsing.	Exsing	Exsting	Exsting	Exsing	Exsing	Exsing.							so	so		
													\$22,233															
so								so	so																			
${ }_{\text {Exsting }}^{\text {Ex }}$	${ }_{\text {Exsting }}^{\text {S1264 }}$		${ }_{\substack{\text { Exsting } \\ \text { S12.641 }}}^{\text {dem }}$	${ }_{\text {Exsting }}^{\text {S12.64 }}$	${ }_{\text {Exsting }}^{\text {S12,64 }}$	${ }_{\text {Exsting }}^{\text {S12, }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exssing }}^{\text {Esi.641 }}$	Exsting	${ }_{\text {Exsting }}^{\text {S12.64 }}$	${ }_{\text {Exsting }}$	$\underset{\substack{\text { Exising } \\ \text { S12641 }}}{\text { Ster }}$	$\underset{\substack{\text { Exsting } \\ \text { S12641 }}}{ }$	${ }_{\text {Exsting }}^{\text {S12.64 }}$	$\underset{\text { Exising }}{\text { S12641 }}$	$\underset{\substack{\text { Exising } \\ \text { S12641 }}}{\text { Ster }}$	${ }_{\text {Exicting }}^{\text {S12, }}$	$\underset{\substack{\text { Exising } \\ \text { S12641 }}}{\text { ate }}$							so	so		
so							so		so																			
Exsing	Exsting	Exsing	Exsiting	Exsing	Exsing	Exsing	Exsting	Exsing	Exsing	Exsing	Exsing							so		so								
516.197	\$16, 197	\$16, 197	816.197	\$16,197	\$16,197	\$16,197	516.197	\$16, 197	\$16.197	816.197	\$16,197	\$16, 197	\$16, 197	\$16,197	\$16,197	\$16, 197	\$16, 197	\$16, 197										
so							so		so																			
Exising	Exsiting.	Existing	Exsiting	Exising	Exsiting	Exsting	Exsiting	Exsting	Exsing	Exsiting	Exsing	Exsiting.	Exsting	Exsting	Exsting	Existing	Exsing	Exsting							so		so	
\$14,221	S14,221	\$14,221	\$14,221	\$14,221	\$14,221	\$14,221	\$14,221	S14,221	\$14,221	\$14,221	\$14,221	\$14,221	\$14,221	\$14,221	\$14,221	\$14,221	\$14,221	\$14,221										
593.411	\$93,411	\$93.411	\$93,411	993,411	593.411	\$93.411	593,411	593.411	593.411	593.41	593.411								\$1,401.165		\$1,401, 165							
\$235,000	\$235,000	\$235,000	\$235,000	\$235,000	${ }_{\text {S235,000 }}^{\text {S1,752 }}$	\$235,000	${ }_{\text {S }}^{\text {S23,000 }}$ S9,752	${ }_{\text {S }}^{\text {S23, }}$ S1,700	\$235,000	\$235,000	${ }_{\substack{\text { S235,000 } \\ \text { S9,752 }}}$	${ }_{\substack{\text { S23,000 } \\ \$ 9,752}}$	${ }_{\text {S235,000 }}^{\$ 19,52}$	${ }_{\text {S }}^{\text {S23,000 }}$ \$9,752	${ }_{\text {S235,000 }}^{\text {S1, } 72}$	${ }_{\text {S }}^{\text {S23,000 }}$ \$9,752	${ }_{\text {STS }}^{\text {S23,000 }}$	${ }_{\text {S }}^{\text {S23,000 }}$ \$9,752							55,170.000		55,170,000	
${ }_{\text {\$127 }}$	${ }_{\text {S127 }}$	${ }_{5127}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}$	${ }_{5127}$	${ }_{\text {S127 }}$																						
Exising	Exssing	Exssing	Exsing	Exssing	Exssing	Exssing	Exssing	Exssing	Exssing	Exsising	Exssing	Exsting			Exsing	Exsting		Exsting	so		so				so		so	
\$30.813	\$30.813	\$30.813	830.813	\$30.813	530.813	530.813	\$30.813	530.813	530.813	530.8.83	\$30.813	530.813	S33.813	830.813	\$30.8.813	${ }_{\text {s30.813 }}$	8330.813	538.813										
${ }^{\text {\$127 }}$	${ }^{5127}$	${ }^{5127}$	${ }_{\text {S }} 127$	$\5127	\$127	${ }^{5127}$	\$127	${ }^{127}$	\$127	${ }^{127}$	${ }^{\text {S127 }}$	\$127	\$127	\$127	\$127	\$127	\$127	\$127	so	so								
Exsing	Exsting	Exsing	Exsing	Exsing	Exssing	Exsing	Exsing	Exssing	Exsing	Exsiting	Exsing	Exsting	Exsing	Exsing	Exsing	Exsing.	Exsiting	Exsing	so						so	so		
\$26.073	\$26.073	\$26,073	\$26,073	826,073	\$26.073	\$26.073	\$26.073	522.073	\$26.073	526.073	\$26.073	\$26.073	\$26.073	\$26.073	\$26.073	\$26.073	526,073	\$26.073										
		so																	so	so								
$\underset{\substack{\text { Exising } \\ \$ 18,060}}{\text { E, }}$	${ }_{\text {Exising }}^{\text {E18,06 }}$	${ }_{\text {Exising }}^{\text {Si8,06 }}$		${ }_{\text {Exsting }}^{\text {Si8,06 }}$	${ }_{\text {Exising }}^{\text {Si8,06 }}$	${ }_{\text {Exising }}^{\text {Si8,06 }}$	Exsting	${ }_{\text {Exsting }}^{\substack{\text { Esi.006 }}}$	${ }_{\text {Exsting }}^{\text {S18.606 }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$	$\underset{\text { Exsing }}{\substack{\text { S18,06 }}}$	$\underset{\substack{\text { Exiting } \\ \text { S18.606 }}}{ }$	$\underset{\substack{\text { Exsitig9 } \\ \text { S18,006 }}}{ }$	$\underset{\substack{\text { Exising } \\ \text { S18,006 }}}{ }$	${ }_{\text {Existing }}^{\text {Eli,606 }}$	${ }_{\text {Exsting }}^{\substack{\text { S18,606 }}}$	$\underset{\substack{\text { Exssing } \\ \$ 18,606}}{ }$							so	so		
so									so		so																	
Exsing	Exsting	Exsing	Exssing	Exsing							so		so															
526.468	${ }_{526,468}$	${ }_{526.468}$	\$26.468	\$22,468	${ }_{526.468}$	${ }_{\text {527,468 }}$	${ }_{52} 52.468$	526,468	\$22,468	526.468	526.468	${ }_{526.468}$	\$22.468	\$22,468	\$22,468	\$22.468	\$26.468	\$22,4688										
s106,151	\$106,151	\$106,151	S106,151	S106,151	S106, 151	\$106, 151	\$106,151	\$106,151	\$106,151	\$106,151									\$1.592.272		\$1.592.272							
\$264,400		${ }_{\text {S }}^{5844000}$	${ }_{\text {S264,400 }}^{52,51}$	${ }_{\text {S } 264400}^{82,517}$	${ }_{\text {S }}^{524,400}$	${ }_{\text {S }}^{\text {S264,400 }}$ S2,517	${ }_{\text {S }}^{\text {S264,400 }}$	${ }^{\text {P264,400 }}$	${ }_{\text {S }}^{\text {S264,400 }}$	${ }_{\text {S264,400 }}^{\text {S2,517 }}$	${ }_{\text {S }}^{\text {S264,400 }}$	${ }_{\text {S }}^{5264.500}$	${ }_{\text {S264,400 }}^{\text {S2,517 }}$	${ }_{\text {S }}^{\text {S24,400 }}$	$\frac{5864000}{82,517}$	${ }_{\text {S264,400 }}^{\text {S22517 }}$	${ }_{\text {S264000 }}^{52517}$	${ }_{5264040}^{52517}$							\$6.081,200		\$6.081,200	
${ }_{\text {S }}^{5127}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }} 5$	${ }_{\text {s127 }}$	${ }_{\text {S2 }} 5127$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}$	${ }_{\text {S }}{ }^{2127}$	${ }_{\text {S2 }} 5127$	\$127	\$127	\$127	\$127	\$127	\$127														
\$163848		${ }_{\text {S }}^{51679.548}$	${ }_{\text {S1367, } 548}^{580}$		$\underset{\$ 8168.548}{\substack{\text { S }}}$		${ }_{\text {S }}^{51637,548}$		${ }_{\text {S18397.348 }}$	${ }_{\text {S1339, }}^{548}$	${ }_{\text {\$18397.348 }}$								\$2457.716					${ }^{52,457716}$	58,745880			
\$35,040	\$35,040	\$35.940	\$35.040	\$35.040	\$35.040	\$35.940	\$35,040	\$35,040	\$35,040	S35.040	\$35.940	\$35.040	\$35.040	\$33.040	\$35.940	${ }^{535.040}$	\$35,940	\$33.040										
${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}^{\text {s0 }}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}^{\text {s0 }}$	${ }_{\text {S127 }}^{\text {s0 }}$	${ }_{\text {S127 }}{ }_{\text {SO}}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}^{\text {s0 }}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}$	\$127	\$127	\$127	s127			so		so							
Exsing	Exsting	Exsing	Exssing	Exsing	Exsting	Exsing	Exsing	Exsing	Exsting	Exsting	Exsting	Exsing	Exsing	Exsting	Exsing	Exsing	Exsiting	Exsing							so		so	
\$150.012	\$150012	\$150012	\$150012	\$150012	\$150.012	\$150.012	\$15.012	\$15.012	\$15.012	\$15012	\$15.012	\$150,12	\$15.012	\$150012	\$150012	\$150.012	\$15.012	\$15.012										
so									so		so																	
Exsting	Exsting	${ }_{\text {Exsting }}^{\text {S8.612 }}$	Exsing	Exsting	Exsing	Exsting	Exsing	Exsting	${ }_{\text {Exsing }}^{\text {S8,612 }}$	${ }_{\text {Exsing }}{ }_{\text {S8,612 }}$	Exsting	${ }_{\text {Exsting }}^{\text {S8,612 }}$	Exsting	Exsting	${ }_{\text {Exsting }}^{\text {S8,612 }}$	${ }_{\text {Exsting }}^{\text {S8,612 }}$	${ }_{\text {Exsing }}^{\text {S8.612 }}$	Exstiog							so		so	
${ }_{\text {S }}^{58.612}$																												
S88.499100		\$88299900	${ }_{\text {S }}^{5829.491}$	\$882.4910	${ }_{\text {S289,490 }}$	${ }_{\substack{\text { S } \\ \text { S22998900 }}}$	${ }_{\text {S209800 }}$	S829.890	S822.991	${ }_{\text {S }}^{\text {S229,491 }}$	S882.491								\$1,237.359	\$1,237.359					54.615 .600	\$4,615.600		
\$17,382	\$17,382	\$17,382	\$17,382	\$17,382	\$17,382	\$17,382	\$17,382	\$17,382	\$17.382	\$17,382	\$17,382	\$17.382	\$17,382	\$17,382	\$17,382	\$17,382	\$17,382	\$17,382										
${ }_{\text {\$127 }}$	${ }_{5127}$	${ }_{5127}$	${ }_{5127}$	5127	S127																							
Exsing	Exsting	Exssing	Exsing	Exsing	Exssing	Exssing	Exssing	Exssing	Exsing	Exsting	Exsing	Exsiting	Exsiting	Exsting	Exsting	Exsing	Exsiting	Exsting	so		${ }_{\text {so }}$				so		so	
${ }^{533.578}$			833.578		${ }^{933.578}$	\$33.578	\$33.578	${ }^{533.578}$	533.578	¢33,578	533.578	533.578	\$33.578															
${ }_{\text {s127 }}^{\text {so }}$	${ }_{\text {s127 }}^{\text {so }}$	${ }_{\text {s }}^{\text {si2 }}$	${ }_{\text {s }}^{\text {si2 }}$	${ }_{\text {si27 }}^{\text {so }}$	${ }_{\text {S127 }}{ }_{\text {so }}$	${ }_{\text {s12 }}{ }_{\text {so }}$	${ }_{\text {s127 }}{ }_{\text {so }}$	${ }_{\text {si27 }}^{\text {so }}$	${ }_{\text {S127 }}{ }_{\text {so }}$	${ }_{\text {si27 }}^{\text {so }}$	\$127	8127	\$127	\$127	\$127	\$127	\$127		so		so							
Existing	Exsitiga	${ }_{\text {Exisitiga }}$	Exsing	Exsing	Exsitig9	Exsiting	Exsiting	Exssing	Exssing	Exsing	Exsting	${ }_{\text {Exsiting }}$	Exsiting	Exstitig	${ }_{\text {Exisitiga }}$	Exsiting	Exsting	Exsitios							so		so	
${ }_{\text {S }}^{\text {S1226 }}$ \$127	${ }_{\text {S }}^{\text {\$1226 }}$	${ }_{\text {S }}^{\text {S1224 }}$	${ }_{\text {S12, }}^{\text {S127 }}$	${ }_{\text {S }}^{\text {S1226 }}$ \$127	$\underset{\text { S12, }}{\text { S127 }}$	${ }_{\text {S }}^{\text {S12,26 }}$	${ }_{\text {S }}^{\text {S1224 }}$	${ }_{\text {S12, }}^{\text {S126 }}$																				
																			so		so							
		$\underset{\substack{\text { Exsitiog } \\ \text { S31.20 }}}{\text { S }}$	${ }_{\text {Exssing }}^{\text {S31.208 }}$	$\underset{\substack{\text { Exsting } \\ \text { S31.208 }}}{\text { a }}$	${ }_{\text {Exsting }}^{\text {E31.208 }}$	$\underbrace{\substack{\text { E31.20 }}}_{\text {Exsting }}$	${ }_{\text {Exsting }}^{\text {E31.208 }}$	${ }_{\text {Exsting }}^{\substack{\text { E3,208 }}}$	${ }_{\text {Exsting }}^{\text {S31.208 }}$	${ }_{\text {Exssing }}^{\text {S31.208 }}$	${ }_{\text {Exsting }}^{\text {S31.208 }}$	${ }_{\text {Exsting }}$	$\underset{\substack{\text { Exsting } \\ \text { S31.208 }}}{\text { a }}$	$\underset{\substack{\text { Exsting } \\ \text { S31.208 }}}{\text { a }}$	$\underset{\substack{\text { Exsting } \\ \text { S31.208 }}}{\text { enem }}$	$\underbrace{\text { E31,20 }}_{\text {Exsing }}$	$\underbrace{\text { S3, 208 }}_{\text {Exsting }}$								so		so	
Exssing	Exssing	Exssing	Exsing	Exssing	Exssing	Exssing	Exssing	Exssing	Exssing	Exsing	Exssing	Exsting	Exsing	Exsing	Exsting	Exsingo	Exsiting	Exsting	so		so				so		so	
S18, 172	\$18,172.	\$18,72	\$18.72	\$18,122	\$18, 12	S18, 172	\$18,172	S18, 172	\$18,172	s18,172	\$18,172	\$18,122	\$18,172	\$18,172	\$18, 12	\$18,172	\$18,172	\$18,122										
so								so		so																		
Exsing	Exsting	Exsting	Exsiting	Exsing	Exsing	Exsting	Exsing	Exssing	Exsing	Exsing	Exsing	Exsting	Exsing	Exsing	Exsing	Exsiting	Exsting								so		so	
\$4,291	544,291	\$4,291	S44,291	\$4,291	\$4,291	\$4,291	\$4,291	\$4,291	\$4,291	544291	\$4,291	\$4,291	\$4,291	\$4,291	\$4,291	\$4,291	S44,291	S4,291										
																			so		so							
${ }_{\text {Exising }}$	${ }_{\text {Exising }}$	${ }_{\text {Exsising }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$ S49775	Exising	${ }_{\text {Exising }}$	${ }_{\text {Exssing }}^{\text {S4977 }}$	${ }_{\text {Exsing }}$ S99775	${ }_{\text {Exsting }}^{\text {S49,75 }}$	${ }_{\text {Exsting }}^{\text {S4975 }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exsting }}^{\text {S99775 }}$	${ }_{\text {Exsting }}$ S99775	${ }_{\text {Existing }}$	${ }_{\text {Exsiting }}$	${ }_{\text {Exsting }}^{\text {S4975 }}$	${ }_{\text {Existing }}$							s0		so	
Exssing	Exssing	Exssing	Exsing	Exssing	Exssing	Exssing	Exssing	Exssing	Exssing	Exsing	Exssing	Exsing	so		so				so		so							
\$19,752	\$19,752	\$19,752	${ }_{\text {s19,752 }}$	\$19,752	\$19,752	S19,752	\$19,752	\$19,752	\$19,752	\$19,752	\$19,752	\$19,752	\$19,752	\$19,752	\$19,752	\$19,752	\$19,752	\$19,752										
${ }_{\text {S66,127 }}^{\text {S127 }}$	${ }_{5666,10}$	${ }_{\text {S66,127 }}^{\text {S127 }}$	${ }_{\text {S66,110 }}^{\text {S127 }}$	${ }_{566,110}^{\text {S127 }}$	${ }_{\text {S66,127 }}^{\text {S127 }}$	${ }_{\text {S66,127 }}^{\text {S127 }}$	${ }_{\text {S66,127 }}^{\text {S127 }}$	${ }_{\text {S66.10 }}^{\text {S127 }}$	${ }_{566,10}^{510}$	${ }_{\text {S66,110 }}^{\text {si27 }}$	${ }_{566,110}^{\text {S127 }}$								\$991,649		\$991,649							
\$172,000	\$172.000	\$172.000	s172,000	\$172.000	S172.000	S172,000	\$172,000	\$172,000	\$172.000	\$172,000	\$172.000	\$172.000	\$172.000	\$172,00	\$172.000	\$172.000	\$172,000	S172,000							53,784,000		53,784,000	
${ }^{813.826}$	\$13.826	\$13,826	\$13,826	\$13,826	${ }^{813.826}$	\$13,826	\$13,826	\$13,826	\$13.826	\$13.826	\$13.826	\$13,826	\$13.826	\$11,826	\$13,826	\$13,826	\$11,826	\$11,826										
		${ }_{\text {si2 }}^{\text {so }}$				${ }_{\text {S127 }}$	${ }_{\text {si27 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {S0 }}$	${ }_{\text {S }}{ }_{\text {S }}$										so	so								
$\underset{\text { Exising }}{\text { Silis6 }}$	$\underset{\substack{\text { Existing } \\ \text { S11,45 }}}{ }$	$\underset{\text { Exising }}{\text { Silis6 }}$	$\underset{\text { Exsting }}{\text { Sil }}$	Exising	${ }_{\text {Existing }}$	${ }_{\text {Exising }}^{\text {Silis6 }}$	Exising	Exssing	Exising	${ }_{\text {Exising }}$	${ }_{\text {Exising }}^{\text {Sil }}$	${ }_{\text {Exising }}$							0	so								
${ }_{\text {Exsining }}^{\text {So }}$	Exssing	${ }_{\text {Exssing }}^{\text {so }}$	Exsino	${ }_{\text {Exssing }}^{\text {so }}$	${ }_{\text {Exssing }}^{\text {so }}$	${ }_{\text {Exssing }}^{\text {so }}$	Exssing	Exssing	Exssing	Exsing	Exssing	Exssing		Exsting	Exsting	Exsing			so	so					so	so		
\$6,046	\$6,046	S6.046	S6.046	S6.046	\$6.046	S6.046	S6.046	\$6,046	\$6,046	S6.046	\$6,046	S6.046	\$6,046	S6.046	S6.046	\$6,046	S6.046	\$6.046										
		so	so			so	so	so											so		so							
${ }_{\text {Exssing }}$	${ }_{\text {Exsing9 }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exssing }}$	${ }_{\text {Existing }}$	${ }_{\text {Exsing9 }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exsinga }}^{\text {S45,33 }}$	${ }_{\text {Exssing }}$	Exssing	Exssing	Exsting	${ }_{\text {Exssing }}$	Exsting	Exsting	${ }_{\text {Esisting }}$	${ }_{\text {Exssing }}$	Exsing	${ }_{\text {Esistina }}$							so		so	
sol	sol																											

2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	Subtotal	Private	Local Govt. State Govt.	Fed Govt.	Tribal Gout.	Military
Existing	${ }_{\text {Exsting }}$		$\xrightarrow{\text { Exxsiting }}$ \$22,922	$\underset{\substack{\text { Existing } \\ \text { S22.912 }}}{\text { S }}$	$\underset{\substack{\text { Existing } \\ \$ 822.92}}{ }$		Existing	Exsting	Exsting	Exsting	Exsting	Exsting	Existing	Exsting	Exsting	Existing	${ }_{\text {Exxsing }}^{\text {Ex2.912 }}$							
so								\$0		\$0														
Exsting	Exsiting	Exsiting	Exsing	Exsing	Exsiting	Exsiting	Exsiting	Exsiting	Exsiting	Exsiting	Exsting	Exsting	Exsiting	Exsiting	Exsiting	Exsing	Exsing	Exsiting						
\$9.876	\$9.876	\$9.876	59.876	59.876	\$9.876	\$9.876	\$9.876	\$9.876	\$9.876	\$9.876	59.876	59.876	59.876	59.876	59.876	59.876	\$9.876	\$9.876						
so	\$0	so	\$0	so	so								so		\$0									
Exsing	Exsing	Exsing	Exsiting	Exsing	Exsiting	Exsiting	Exsiting	Exsing	Exsiting	Exssing	Exsing	Exsing	Exsing	Exsiting	Exsiting	Exsiting	Exising	Exsting						
\$59,256	\$59,266	\$59,266	\$59,256	\$59,256	\$59,266	\$59,256	\$59,266	\$59,256	\$59,266	\$59,256	\$59,256	\$59,256	\$59,266	\$59,256	\$59,266	\$59,266	\$59,256	\$59,256						
so							so		s0															
${ }_{\text {Exsing }}{ }_{\text {S }}$	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\text {Existing }}$	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\substack{\text { Exsting } \\ \text { S38319 }}}$	Exising	Exising	Exising	Existing	Exising	Exising	Existing	$\underset{\text { Exsting }}{\text { S38319 }}$	$\underset{\substack{\text { Exsting } \\ \text { S38319 }}}{ }$	Existing	$\underbrace{\text { S38319 }}_{\text {Exsiting }}$	Exssing						
	\$38,319			\$38,319	\$38,319	\$38.319	\$38,319								\$38,319	\$388,319	\$88,319	\$38.319						
so	\$0	so	so	so	so	so	\$0	\$0	\$0	\$0									\$0		\$0			
Exsting	Exsing	Exising	Exising	Exsing	Exising	Exising	Exsiting	Exsing	Exsing	Exsing	Exsting	Exsting	Exsting	Exsting	Exsting	Exsing	Exsting	Existing						
\$4,778.	54.778	54.778	\$4,778	S4,778	54.778	S4,778	\$4,778	54,778	54.778	54.778	¢4,778	\$4,778	54, 778	S4,778	S4,778	\$4,778	\$4,778	54,778						
\$127	\$127	\$127	8127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127						
so	so	so	\$0	so								so		\$0										
${ }_{\text {Existing }}$	Exising	Existing	Exsting	Exsting	Existing	Existing	Exsting	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\text {Exsting }}^{\text {S }}$	$\underbrace{\text { S }}_{\text {Exsting }}$	${ }_{\substack{\text { Existing } \\ \$ 13,273}}$	${ }_{\substack{\text { Existing } \\ \$ 13,273}}$	$\underset{\text { Exsting }}{\text { S13,27 }}$	$\underset{\text { Exsting }}{\text { S13,23 }}$	$\underset{\text { Existing }}{\text { Sis,273 }}$	${ }_{\text {Exising }}^{\text {Ei3,273 }}$						
\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127																
			${ }^{\$ 87.006}$		${ }^{\text {\$72,406 }}$	${ }^{\text {S72,406 }}$	${ }^{\text {s72,406 }}$	\$27,406	\$27.406	${ }^{\$ 27,406}$	${ }^{\text {S27,406 }}$	\$27,406	${ }_{\text {S }}^{5274060}$	\$ $\$ 274006$	\$ $\$ 274006$		${ }^{\$ 27.406}$		\$441,090		5411.090			
			\$159,400	\$159.400	\$159.400	\$159.400	\$159,400	\$159,400	\$159,400	\$159,400	\$159,400	\$159,400	$\$ 159,400$	\$159,400	\$159.400	\$159,400	$\$ 159.400$	\$159.400						
		\$60.641	\$12.641	\$12.641	\$12.641	\$12,641	\$12,641	\$12.641	\$12.641	\$12.641	\$12.641	\$12.641		\$12.641	\$12.641	\$12.641		\$12.641						
${ }_{5}{ }^{\text {sid }}$	\$0	\$0	\$0	${ }^{\text {80 }}$	so	${ }^{\text {sino }}$	${ }^{\text {sin }}$	so	so	${ }^{\text {sin }}$									so		\$0			
Exsing	Exsting	Existing	$\underset{\substack{\text { Exsing } \\ \text { \$15.407 }}}{ }$	Existing \$15,407																				
\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127						
\$75,210	\$75,210	875.210	\$75.210	\$75,210	\$75.210	\$75.210	\$75.210	\$75.210	\$75.210	\$75.210									\$1,128,155		\$1,128,155			
\$193000	\$193,000	\$193.000	\$193000	\$193,000	\$193.000	\$193.000	\$193.000	\$193.000	\$193.000	\$193.000	\$1933000	\$193.000	\$1932000	${ }_{\text {c }}^{\text {S }}$	\$993000	\$ 8193.000	\$8193.000	\$193000						
\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802	\$15.802						
so									\$0	so														
Exsting	Exsitigg	Exsting	Exsifing	Exsting	Exsiting	Exsising	Exsting	Exsising	Exsising	Exsing	Exsting	Existing	Exsting	Exsiting	Exsiting	Exsting	Exsiting	Exsting						
\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987	\$16,987						
so	so	\$0	so	so	so	so	so	so	50	so									s0		\$0			
${ }_{\text {Exsing }}{ }_{\text {S31.003 }}$	Existing	Exsiting	Existing	Exsiting	Exsiting	Exising	Exising	Exsising	Exising	Exxsing	Exsting	Exsting	Existing	Exsting	Existing	Exsiting	Exsting	${ }_{\text {Exsing }}^{\text {E31.603 }}$						
\$127	\$127	S 8127	\$127	\$127	S 127	\$127	\$3127	\$127	\$127	\$1. 8127	\$127	\$127	\$127	S ${ }_{\text {Si2 }}$	S ${ }_{\text {S }}$	S\$127	\$127	S ${ }_{\text {S }}$						
so	so	so	so	\$0	so	so	so	so	so	so	\$0								\$0		\$0			
Exising	${ }_{\text {Exsting }}^{\text {S }}$	${ }_{\text {Exsting }}^{\text {S }}$	Existing	Existing	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\text {Existing }}^{\text {S36,34 }}$	Existing	Existing	Existing	${ }_{\text {Existing }}^{\text {S3634 }}$	${ }_{\text {Existing }}^{\text {S3634 }}$	${ }_{\text {Existing }}^{\text {S3634 }}$	${ }_{\text {Existing }}^{\text {S }}$	${ }_{\text {Existing }}^{\text {S }}$	Exising	${ }_{\text {Existing }}^{\text {E }}$	Existing	Existing						
				\$36,344	\$36,344	\$36,344	\$36,344	\$36,344	\$36,34	\$36,344			\$36,344	\$36,344	\$36,344	\$36,344	\$36,344	\$36,344						
so	so	so	so		so	so	so			so									so	so				
Exising	Existing	${ }_{\text {Existing }}^{\text {S14320 }}$	Existing	${ }_{\text {Existing }}^{\text {S1432 }}$																				
$\begin{array}{r} \$ 14.32020 \\ \mathbf{S 1 2 7} \end{array}$	${ }_{\text {S14,320 }}^{\text {S127 }}$	\$14,320	$\underset{\text { s14,320 }}{\text { \$127 }}$	${ }_{\text {S14,320 }}^{\text {S } 127}$	\$14,320	\$14,320	\$14,320	\$14,320	\$14,320	\$14,320	${ }_{\text {S14,320 }}^{\text {\$127 }}$	\$14,320	\$14,320	\$14,320	\$14,320	\$14,320	\$14,320	\$14,320						
\$77.850	\$78.850	\$78.850	\$78.850	578.850	\$78.850	\$78.850	578.850	578.850	\$78.850	\$78.850	\$78.850								\$1,182,757		\$1,182,757			
\$201, 400	\$201,400	\$201,400	\$201, 400	\$201,400	\$201, 400	\$201, 400	\$201,400	\$201,400	\$201,400	\$201,400	\$201.400	\$201,400	\$201,400	\$201,400	\$201,400	\$201,400	\$201, 400	\$201, 400						
\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16,592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592	\$16.592						
\$0	so	\$0	so									\$0		\$0										
Exisitiga	Exising	Exisitiga	Existing	Exising	Exising	Exsiting	Exisitiog	Exisitiog	Exisitig	Exising	Exsting	Exising	Existing	Exsting	Existing	Exising	Exsitigg	Existing						
\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702	\$11,702						
\$0	so.	so	so	so		so	so			so	so								so		so			
Exsting	Exsting	Exsting	Exsing	Exstring	Exsiting	Exsiting	Exsiting	Exsining	Existing	Exsing	Exsiting	Exsiting	Exsting		Exsiting	Exsiting	Exsiting	Exsiting						
\$26.073	\$26,073	\$26,073	\$22,073	\$26.073	\$26,073	\$26.073	\$22.073	\$26.073	\$26.073	\$26.073	\$26.073	\$26.073	\$22.073	\$26,073	\$22,073	\$22,073	\$26,073	\$26.073						
${ }_{\text {S127 }}{ }_{\text {S }}$	$\frac{8127}{80}$	${ }_{\text {S127 }}{ }_{\text {80 }}$	${ }_{\text {\$127 }}{ }_{80}$	$\frac{\$ 127}{50}$	$\frac{\$ 127}{80}$	$\frac{\$ 127}{80}$	${ }_{\text {S127 }}{ }_{50}$	${ }_{\text {S127 }}{ }_{\text {S }}$	${ }_{\text {S127 }}{ }_{\text {S }}$	$\stackrel{\$ 127}{80}$	\$127	\$127	\$127	\$127	\$127	\$127			\$0		\$0			
Exsing	Exsting	Exsing	Exsiting	Exsiting	Exsiting	Exsing	Exsiting	Exsiting	Exsiting	Exsiting	Exsting	Exsiting	Exsting	Exsiting	Exsting	Exsting	Exsing	Exsting						
\$7314	\$7,34	\$7.314	\$7,314	87.314	\$7,314	\$7314	\$7,314	\$7314	\$7314	\$7314	\$7,314	\$7,34	\$7,314	87.314	87314	87314	\$7,34	\$7,314						
so		so									\$0	so												
Exising	Existing	Exsting	Existing	Exsting.	Exsiting	Exsiting	Exsiting	Exsting	Exsting	Exsting	Existing	Exsiting	Exsiting	Exsiting	Exsiting	Exsiting	Exsiting	Exsing						
\$13.036	\$13,036	\$13.036	\$13,036	\$13,036	\$13.036	\$13.036	\$13.036	\$13.036	\$13.036	\$13.036	\$13.036	\$13.036	\$13.036	\$13,036	\$13,036	\$13.036	\$13.036	\$13.036						
	so	\$0	so																\$0		\$0			
$\underset{\substack{\text { Exsitigg } \\ \$ 38319}}{ }$	$\underbrace{\substack{\text { E38319 }}}_{\text {Exsing }}$	${ }_{\substack{\text { Exsiting } \\ \text { S38319 }}}$	Existing	$\underset{\substack{\text { Exsiting } \\ \text { S38319 }}}{ }$	${ }_{\substack{\text { Exsing } \\ \$ 838319}}^{\text {S }}$	${ }_{\text {Exising }}^{\substack{\text { Ex } \\ \$ 38319}}$	${ }_{\text {Exising }}^{\text {Esing }}$	${ }_{\text {Exsing }}^{\text {Exin }}$		$\underset{\substack{\text { Exsising } \\ \text { S38319 }}}{ }$	${ }_{\text {Existing }}^{\substack{\text { E } \\ \text { S38319 }}}$	${ }_{\substack{\text { Exsing } \\ \text { S38319 }}}^{\text {S }}$	$\underbrace{\text { S38319 }}_{\text {Existing }}$	$\underbrace{\text { S38319 }}_{\text {Existing }}$	Existing		${ }_{\text {Exsting }}^{\text {c38319 }}$	$\underbrace{\text { E38390 }}_{\text {Exsting }}$						
\$38,319	\$38,319	\$38,319	\$38.319	\$838,319	\$38.319	\$88.319	\$38.319	\$38.319	\$38.319	\$38.319	\$88,319	\$88,319	\$38.319	\$83,319	\$83,319	\$88.319		\$38.319						
so		so	so																s0		so			
${ }_{\text {Exsting }}^{\$ 5.851}$	Exsting	Existing	Existing	Existing	Existing	Exsting	Existing	${ }_{\text {Existing }} \times 585$	$\frac{\text { Exising }}{55851}$															
\$5.851	\$5.851.	56.851	\$5.851	\$5.851.	\$5.851	\$5.851	${ }^{56.851}$	\$56.851	\$5.851	\$5.851	\$5.851	\$5.851	\$5.851	\$5.851	\$5.851	\$5.851	\$5.851	\$5.851						
		so			so	so	so												\$0	so				
Exising	Exsting.	Exsting	Exsiting	Exsting	Exsising	Exsiting	Exsting	Exsting	Exsting	Exsiting	Exsiting	Exsting												
\$35.949	\$35,949	535.949	\$35.949	\$35.949	\$35.949	\$35.949	\$35.949	\$35.949	\$35.949	\$35.949	\$35,949	\$35.949	\$35,949	\$35,949	\$35,949	\$35,949	\$35.949	\$35.949						
																			\$0		\$0			
Exsting	Exsting	Exsiting	Exsiting	Exsting	Exsiting	Exsiting	Exsting	Exising	Exising	Exising							Exsting	${ }_{\text {Exsting }}^{\text {Exiol }}$						
$\underset{\$ 10,337}{\$ 127}$	$\underset{\$ 10,337}{\$ 127}$		\$10,337	(\$10,337	\$10.337	\$10,337	\$10.337	\$10.337	\$10.337	\$10.337	\$10.337 $\$ 127$	\$10.337	(10.337	\$10.337	\$10.337	\$10,377	\$10,337						
		so	so		so	so	so	${ }_{\text {so }}$	${ }_{50}$	\$0	so	so							\$0		\$0			
Exsiting	Exsting	Exssing	Exsing	Exsiting	Exsiting	Exsiting	Exssting	Exsiting	Exsting	Exsiting	Exsiting	Exsiting	Exsting	Exsiting	Exsiting	Exsiting	Exsting	Exsting						
\$28,048	\$28.048	528.048	\$28,048	\$28.048	\$28.048	\$28.048	\$28.048	\$28.048	\$28.048	\$28,048	528.048	\$28.048	\$28,048	\$28,048	\$28.048	\$28.048	\$28,048	\$22.048						
			so			so	so			so									\$0		\$0			
Exising	Exsiting.	Exsiting	Exsiting	Exsting	Exsiting	Exsting	Exsting	Exstring	Exssting	Exsting	Exsting	Exsting			Exsting	Exsting		Exsting						
\$22.715	\$222,715	\$222,715	\$22,715	${ }_{\text {S22,715 }}{ }_{\text {S127 }}$	\$22,715	\$22.715	${ }_{\text {S22,715 }}$	\$22.715	\$22.715	\$22,715	${ }^{522,715}$	${ }^{522,715}$	${ }_{\text {S22,715 }}$	${ }_{\text {S22,715 }}{ }^{\text {S127 }}$	${ }_{\text {S22,715 }}{ }_{\text {S127 }}$	${ }_{\text {S22,715 }}{ }_{\text {S127 }}$	${ }_{\text {\$22,715 }}{ }_{\text {S127 }}$	${ }^{\text {S22,715 }}$						
	${ }_{\text {\$127 }}{ }_{80}$	${ }_{\text {S }}^{\text {\$127 }}$	${ }_{\text {S127 }}{ }_{\text {S }}$	${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {\$127 }}{ }_{\text {S }}$	${ }_{\text {S127 }}{ }_{\text {S }}$	${ }_{\text {S127 }}{ }_{\text {S }}$	${ }_{\text {\$127 }}{ }_{\text {¢ }}$	${ }_{\text {\$127 }}{ }_{\text {¢ }}$	${ }_{\text {\$127 }}{ }_{80}$	${ }_{\text {\$127 }}{ }_{80}$		\$127	\$127		\$127			\$0	so				
Exsing.	Existing	Existing	Exsiting	Existing	Exising	Exising	Existing	Existing	Exising	Exising	Exsiting	Exsiting	Exsting	Exsting	Exsiting	Exsiting	Exsting	Exising						
\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172	\$18,172						
		50	so				so	so	so	so									\$0		\$0			
Existing																								
${ }_{\text {S }}^{\text {817,382 }}$	${ }_{\text {\$ }}^{\text {\$17.382 }}$	${ }_{\text {817,382 }}$	${ }^{\mathbf{8}} \mathbf{8 1 7 . 3 8 2}$		\$17.382	\$17,382	\$17.382	\$17.382	\$17,382	\$17,382	\$17.382	\$17.382	\$17.382	\$17,382	\$17.382	\$17,382	\$17382	\$17.382						
${ }_{\text {\$88,7251 }}^{\text {S127 }}$	${ }_{\text {\$88,951 }}^{\text {\$127 }}$	${ }_{\text {\$88,951 }}^{\text {\$127 }}$	${ }_{\text {S88,951 }}^{\text {S127 }}$	${ }_{\text {¢88,951 }}{ }^{\text {S127 }}$	${ }_{\text {¢88,951 }}^{\text {S127 }}$	${ }_{\text {S88,951 }}^{\text {S127 }}$	S87,951	S87,951		\$87,951	\$87,951	\$87,951							\$1,39,262		\$1,39,262			
\$222,400	\$222,400	\$222,400	\$222,400	\$222,400	${ }_{\text {¢ }} \mathbf{\$ 2 2 2 , 4 0 0}$		\$222,400	\$822,400	\$822,400	\$822,400	${ }_{\text {S }}$ \$222,400	\$222,400	\$222,400	\$222,400	\$222.400	\$222,400	\$222,400	\$222,400	\$1,39, 262					
\$18.567	\$18,567	\$18,567	\$18.567	\$18,567	\$18,567	\$18.567	\$18.567	\$18.567	\$18.567	\$18,567	\$18,567	\$18.567	\$18.567	\$18,567	\$18.567	\$18.567	\$18.567	\$18.567						

Subtotal	Private	Local Govt. State Govt.
so		
so		

2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	Subtotal	Private	Local Govt. State Govt.	Fed Govt.	Tribal Govt.	Military	Subtotal	Private	Local Govt.	State Govt.
(Exsting	$\underset{\substack{\text { Exsiting } \\ \text { S47,405 }}}{ }$	$\underset{\substack{\text { Exscring } \\ \$ 47,005}}{ }$	${ }_{\substack{\text { Exising }}}^{\text {S47,005 }}$		(Exsing			${ }_{\text {Exssing }}$	$\underset{\substack{\text { Exsting } \\ \text { S47,05 }}}{ }$	$\underset{\substack{\text { Exising } \\ 547,05}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S47,05 }}}{ }$	${ }_{\text {Exsing }}^{\text {E47,405 }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exicsing }}$	$\underset{\substack{\text { Exssing } \\ \text { S47, } 20}}{ }$							so		So	-
so									so		so																	
Exsting	Exsting	Exising	Exsiting	Exsiting	Exsting	Exsting	Exsing	Exsiting	Exsing	Exsting	Exsting	Exising	Exsting	Exsting	Exsing	Exsiting	Existing	Exsting							so		so	
59.75	59.75	59.75	59.752	59.752	59,752	\$9,752	59.752	59.75	59.75	\$9,752	59.752	59.752	59.752	59.752	59.752	59.752	59.752	59.752										
so								so		so																		
Exising	Exising	Exsitiog	Exising	Exsing	Exsing	Exsing	Exsing	Exsing	Exssing	Exssing	Exssing	Exsitiog	Exsitiog	Exising	Exisitig.	Exsing	Exsitig9	Exsitiog							so		0	
	S6.924	S6,924		S6,924	S6,924	\$6,924	\$6,924	\$6,924				S6.924						S6,924										
	$\frac{\text { so }}{\text { Exsing }}$	${ }_{\text {Exsing }}$	Exsing	Exsing	Exsino			Exsing	Exsing	${ }_{\text {Exsing }}{ }^{\text {c }}$	${ }_{\text {Exsing }}$		Exsing	Exsitiog	Exsina	Exsing			so		so							
Existing $\$ 57,676$	Existing $\$ 57,676$	${ }_{\text {Exsting }}^{\text {E5, }}$	${ }_{\text {Exsting }}^{\text {S57,76 }}$		${ }_{\text {Exsting }}^{\text {S5, } 76}$	${ }_{\text {Exsting }} 5$	${ }_{\text {Exsting }}^{\text {S5, } 76}$	${ }_{\text {Exsting }}^{\text {S5, } 76}$		${ }_{\text {Exsting }}^{\text {S57,76 }}$	${ }_{\text {Exsting }}^{\text {S5, } 76}$	${ }_{\text {Exsting }}^{\text {S57,76 }}$	${ }_{\text {Exsting }}^{\text {S5, } 76}$	${ }_{\text {Exsting }}^{\text {S5, } 76}$	${ }_{\text {Exsting }}^{55,676}$	${ }_{\text {Exsting }}^{\text {S5, } 76}$	${ }_{\text {Exsting }}^{\text {S5, } 76}$	${ }_{\text {Exsting }}^{55,676}$							so		so	
			${ }^{527,406}$	\$27,406	527.406	S27,406	527.406	527.406	527.406	\$27,406	\$27,406	\$27,406	\$27,406	${ }^{227,406}$	\$27,406	527.406	${ }^{227,406}$		5411.090		5411.000							
				\$625.600	\$625.600	\$622,500	\$622,600	\$625.600	\$622,600	\$622,500	\$625.600	\$622,600	\$622,600	\$622,600	\$622,600	\$625.600	\$622,600	\$625,600							\$10,009,600		\$10.099,600	
		S104491	856,991	\$56,491	\$56.991	\$56.991	\$56,991	\$56.491	\$56,491	\$56,491	556.991	\$56.491	556.991	\$56,491	\$56.991	\$56,491	\$56.491	\$56.491										
so								so		so																		
Exising	Exsting	Exising	${ }_{\text {Exsing }}^{\text {S60.411 }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exising }} 86041$	Exising	Exssing	Exsting	Exsting	Exsting	Exsting	${ }_{\text {Existing }}$ S6041	${ }_{\text {Exsting }}^{\text {S6044 }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exssing }}^{\text {S60.44 }}$	${ }_{\text {Exsting }}^{\text {S6044 }}$	${ }_{\text {Exisitig9 }}$	${ }_{\text {Exisitig9 }}$							so		so	
${ }_{\text {S }}^{\text {s }}$	${ }_{\text {S }}^{\text {s }}$	${ }_{\text {S }}^{\text {S }}$ \$6047	$\underset{\text { S60.427 }}{\substack{\text { \$27 }}}$	$\underset{\substack{\text { S60.427 } \\ \text { \$127 }}}{\text { cis }}$	${ }_{\text {S }}^{\text {S }}$	\$80.447	$\underset{\substack{\text { S60.427 } \\ \text { \$127 }}}{ }$	$\underset{\text { S60.427 }}{\$ 127}$	${ }_{\text {S60.427 }}^{\text {\$127 }}$	${ }_{\text {S }}^{\text {S00.427 }}$	$\underset{\substack{\text { S60.427 } \\ \$ 127}}{ }$																	
so		so				so	so	so	si_{0}	$\mathrm{sio}^{\text {som }}$		${ }^{\text {sob }}$							so	so								
${ }_{\text {Exsting }}^{\text {E29.628 }}$	$\underset{\text { Exsting }}{\text { S2, } 288}$	${ }_{\text {Exsting }}^{\text {S29.628 }}$	${ }_{\text {ckess }}^{\text {Exsing }}$	$\underset{\substack{\text { Exssing } \\ \text { S2, } 628}}{\text { ces }}$	${ }_{\text {Exsting }}^{\text {S29,628 }}$	${ }_{\text {Exsting }}^{\text {S29,628 }}$	${ }_{\text {Exsting }}^{\text {S20,68 }}$	${ }_{\text {Exsing }}^{\text {S20,628 }}$				${ }_{\text {Exsiting }}^{\text {S20.628 }}$	$\underset{\text { Exsting }}{\text { S20.628 }}$	$\underset{\text { Exsting }}{\text { S29,688 }}$	$\underset{\substack{\text { Exsting } \\ \text { S20.628 }}}{\text { a }}$	${ }_{\substack{\text { Exsting } \\ \text { S20.628 }}}$	${ }_{\substack{\text { Exising } \\ \text { S22,628 }}}$								so	so		
so								so		so																		
Exsting	Exsing	Exsting	Exsiting	Exsing	Exsting	Exsting	Exsising	Exsising	Exsing	Exsing	Exsiting	Exsing	Exsiting	Exsing	Exsting	Exsing	Exsiting	Exsing							so		so	
S9,264	59.264	59.264	59.264	59.264	59.264	59.264	59.264	599.264	59.264	599.264	59.264	S99.264	59.264	59.264	59.264	59.264	59.264	59.264										
so	so	${ }^{50}$	so									so		so														
Exisitig	Exsiting	Exising	Exsting	Exising	Exising	Exsiting	Exising	Exsing	Exsing	Exsitiga	Exising	Exisitig	Exsitig9	Exisitig	Exising	Exsing	Exsiting	Exsing							so		so	
\$47,705	\$47,405			\$47,405	\$47,405	\$47,405	\$47,405	\$47,405		\$47,405	\$47,405	\$47,405			\$47,405	S47,405		\$47,405										
${ }_{\text {Exsino }}^{\text {som }}$	${ }_{\text {Exstiog }}^{\text {So }}$	${ }_{\text {Exsino }}^{\text {so }}$																	so		so							
$\underset{\substack{\text { Exsting } \\ \text { S51,35 }}}{\text { E, }}$	${ }_{\text {Exsting }}^{\substack{\text { E51,55 }}}$	$\underset{\substack{\text { Exsting } \\ \text { S51,35 }}}{\text { S }}$	$\underset{\substack{\text { Exsting } \\ \text { S51,35 }}}{\text { cen }}$	${ }_{\text {Exsting }}^{\text {E5i,35 }}$	${ }_{\text {Exsting }}^{\text {E51,35 }}$	${ }_{\text {Exsting }}^{\text {E51,35 }}$	${ }_{\text {Exsting }}^{\text {E51,35 }}$	${ }_{\text {Exsting }}^{\text {S51,35 }}$	${ }_{\text {Exsting }}^{\text {S51,35 }}$	${ }_{\text {Exsting }}^{\text {S51,35 }}$	$\underbrace{\text { S51,35 }}_{\text {Exsting }}$	${ }_{\text {Exsting }}^{\text {S51,35 }}$	$\underset{\substack{\text { Exsting } \\ \$ 51,355}}{ }$	$\underset{\substack{\text { Exsting } \\ 551,35}}{\text { ate }}$	$\underset{\text { Exsting }}{\text { S51,35 }}$							so		so				
so	so	so	so		so								so		so													
Exsing	Exsing	Exising	Exsing	Exsting	Exsing	Exsing	Exsing	Exsting	Exsing	Exsing	Exsing	Exsing	Exsting	Exsting	Exsing	Exsing	Exsting	Exsing							so		so	
${ }^{547,405}$	${ }^{547,405}$	${ }_{547,405}$	\$474005	\$47,405.	S47,405	547405	${ }^{547,405}$	${ }_{547,405}$	S47,405	${ }_{547,405}$	S47,405	${ }^{547,405}$	${ }^{547,405}$	\$47,405	${ }^{547,405}$	${ }^{547,405}$	${ }^{547,405}$	${ }_{\text {S47,405 }}$										
\$226.640	\$226.640	\$226.640	\$226.640	\$226.440	\$226.640	\$226.640	\$226.640	\$226.640	\$226.440	\$226.640									83,399,602		\$3,399,602							
	\$542440.	${ }_{5542440}^{54899}$	S542440	\$5424.400	${ }_{\text {S5424,40 }}$	${ }_{\text {\% } 5424.40}^{58969}$	${ }_{\text {S5424,40 }}^{5489}$	${ }_{\text {S5424,40 }}^{54896}$	\$5424.400	\$5424.400	\$5542400	${ }_{5542440} 58.890$	${ }_{55424040}^{54899}$	${ }_{5542440}^{5869}$	${ }_{5542480} 54869$	${ }_{5542440} 5489$	${ }_{5542480}^{54899}$	${ }_{5}^{5542440}$							\$12,476,120		\$12,476.120	
	$\underset{\text { s48,669 }}{\text { S127 }}$	$\underset{\$ 48869}{\$ 127}$	$\underset{\$ 48.697}{\$ 127}$	${ }_{\text {S48,669 }}^{\text {S127 }}$	${ }_{\substack{\text { S48,669 } \\ \text { S127 }}}$	548.669	548.669	548.69	548.69	548.669	\$48,699	548.669	\$48,669	548.669	548.669	548.669	548.669	\$48,669										
\$184.455		${ }_{\text {S }}^{\text {S445.4.00 }}$	\$1844.45000	${ }_{\text {S4454.000 }}^{\text {S84, }}$	${ }_{\text {S4454.000 }}$	${ }_{\text {S445,000 }}$	${ }_{\text {S445,000 }}$		${ }_{\text {S4454.000 }}^{\text {S18415 }}$	${ }_{\text {S }}^{\text {S4454,4,00 }}$									\$2,766,278		\$2.766.218				s9,790.000		¢9,70.000	
533.504	\$39.504	\$33,504	\$39,504	\$39.504	\$33,504	\$33,504	\$39,504	\$39,504	\$39,504	\$39.504	\$39.504	${ }^{3} 93.504$	\$39,504	\$39,504	\$39.504	\$39,504	\$39,504	\$39,504										
so								so	${ }_{50}$																			
Exising	Exsing	Exising	Exsing	Exsting	Exsing	Exsting	Exsing	Exsing	Exsting	Exsing							so	so										
\$65, 182	${ }_{665.182}$	${ }_{\text {865, } 182}$	\$65.182	\$665,182	${ }_{\text {S65, } 182}$		S65.182	S65.182		${ }_{665.182}$	${ }_{\text {865, } 182}$																	
${ }_{\text {s127 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {s }}^{\text {si2 }}$	${ }_{\text {s }}^{\text {si2 }}$	${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {s127 }}{ }_{\text {so }}$	${ }_{\text {si27 }}^{\text {S0 }}$	${ }_{\text {s }}^{\text {s127 }}$	${ }_{\text {s }}^{\text {s127 }}$	${ }_{\text {s127 }}^{\text {so }}$	${ }_{\text {s127 }}^{10}$	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	so		so							
Exsting.	Exstitag.	Exssitiga	Exsing	Exsing	${ }_{\text {Exssitiga }}$	Esisitiga	Exsitiga	Exssing	Exssing	Exssitiga	Exsting	${ }_{\text {Exsting }}$	Exstitig	Exstitig	${ }_{\text {Exsiting }}$ S5z28.	Exstitas.	Exsting	Exstitas.							so		so	
557,281	\$57,281	\$57,281	\$557.281	\$57,281	\$557281	\$557281	\$57,281	\$57,281	\$57,281	557,281	S57,281	\$57,281	\$57,281	\$57,281	\$57,281	\$57,281	\$57,281	\$557.281										
S135,73]	${ }_{\text {S }}^{\text {S331, } 2,600}$	${ }_{\text {S }}^{\text {S } 135,2,673}$	${ }_{\text {S }}^{53351,273}$	${ }_{\text {S }}^{\text {S331, }, 600}$	${ }_{\text {S }}^{\text {S331, }, 673}$	${ }_{\text {S }}^{\text {S331, } 1,60}$	${ }_{\text {S }}^{\text {S331, } 1,60}$	${ }_{\text {S }}^{\text {S331, }, 600}$		${ }_{\text {S }}^{\text {S } 135,273}$	${ }_{\text {S }}^{\text {S313, }, 600}$								\$2.020.089	\$2020.089					\$7,29,200	\$7,295,200		
\$28.838	\$22,838	\$28,838	\$28,838	\$28.838	\$22,938	\$28,938	528.838	\$28,838	\$22,388	S22,388	\$22,838	${ }^{288.838}$	${ }^{228.838}$	${ }^{288.838}$	${ }^{228.838}$	s28,838	${ }^{528,838}$	${ }^{528.838}$							5,295.200	\$,295,200		
so								so		so																		
Exsiting	Exssing	Exsing	Exsing	Exsing	Exsing	Exssing	Exsting	Exssing	Exssing	Exsing	Exssing	Exsing	Exsting	Exsting	Exsiting	Exsting	Exsiting	Exsting							so		so	
${ }_{\text {s }}^{\text {S0,418 }}$ S127	${ }_{\text {S30.418 }}^{\text {S127 }}$	(30.418	$\underset{\text { S30.412 }}{\text { S127 }}$		${ }_{\text {S }}$	${ }_{\text {cken }}$	\$	${ }_{\text {cosem }}^{\text {S }}$	${ }_{\text {Sl }}$	(127	(127	\$127	\$	\$3,4127	${ }_{\text {S }}^{\text {S } 127}$	${ }_{\text {S }}$	\$30487	\$8.427										
so								so		so																		
${ }_{\text {Exsting }}$ \$97.55	Exisiog	${ }_{\text {Exising }}^{\text {S97,55 }}$	${ }_{\text {Exsting }}^{\text {S97,57 }}$	Exstiog	Exsting	${ }_{\text {Exsting }}$	${ }_{\text {Exsing }}$	Exsting	$\underset{\substack{\text { Exsting } \\ \text { S97,575 }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { s97,575 }}}{ }$	$\underset{\text { Exsting }}{\text { S97,575 }}$	$\underset{\substack{\text { Exsting } \\ \text { s97,57 }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S97,575 }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S97,575 }}}{\text { chem }}$	$\underset{\substack{\text { Exstina } \\ \text { S97,575 }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S97,575 }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { s97,575 }}}{ }$	$\underset{\substack{\text { Exising } \\ \text { S97,575 }}}{\text { chem }}$							so		so	
\$127	S127	S127	\$127	\$127	\$127	\$127	${ }_{\$ 127}$	\$127	${ }_{\$ 127}$																			
																			so		so				so		${ }^{\text {so }}$	
$\underset{\text { Exsting }}{\text { Eses }}$	$\underset{\text { Exsting }}{\substack{\text { E388 }}}$	$\underset{\text { Exsting }}{\substack{\text { Es8 }}}$	${ }_{\text {Exsting }}^{\substack{\text { Exis8 }}}$	${ }_{\text {Exsting }}^{\text {E7638 }}$	${ }_{\text {Exsting }}^{\text {Exic38 }}$	${ }_{\text {Exsting }}^{\text {E76.38 }}$	${ }_{\text {Exssing }}^{\text {Exic38 }}$	${ }_{\text {Exs }}^{\text {Exing }}$ S	${ }_{\text {Exs }}^{\text {Exing }}$ S	${ }_{\text {Exsting }}^{\text {E76.38 }}$	${ }_{\text {Exsting }}^{\substack{\text { Exi.38 }}}$	$\underset{\text { Exsting }}{\substack{\text { Es3 }}}$	${ }_{\text {Exsting }}^{\text {S7.638 }}$	${ }_{\text {Exsting }}^{\text {¢76.588 }}$	$\underset{\text { Exsting }}{\substack{\text { E38 }}}$	$\underset{\substack{\text { Exsting } \\ 876.588}}{ }$	$\underset{\text { Exsting }}{\text { E7638 }}$	$\underset{\text { Exsting }}{\text { Exice }}$										
So																			so		so							
Exising	Exsting	Exising		${ }_{\text {Exsing }}$ S73082	Exsting	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$	Exssing	Exsting	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}{ }_{\text {ckese }}$	Existing	Exsting	Exsting	Exising	Exsting	Exsiting	Exsting							so		so	
${ }_{\text {\$73,082 }}^{\text {S127 }}$		${ }_{\text {\$73,082 }} 512$	${ }_{\text {S73082 }}$	${ }_{\text {S73,082 }}^{\text {S127 }}$	${ }_{\text {S }}$	${ }_{\text {S73,082 }}^{\text {S127 }}$	${ }_{\text {S73,082 }}^{\text {S127 }}$	${ }_{\text {S73,082 }} 8127$	${ }_{\text {S73.082 }} \mathbf{8 1 2 7}$	${ }_{\text {chen }}$	${ }_{\text {S73.032 }}^{\text {\$127 }}$	${ }_{\text {¢730.082 }}^{\text {S127 }}$	${ }_{\text {S73082 }}$	${ }_{\text {S73.082 }}^{\text {S127 }}$			${ }_{\text {S }}$											
so	so	so	so	so		so		so	so	so									so		so							
${ }_{\text {Exising }}$	Exsting	${ }_{\text {Exising }}$	${ }_{\text {Exsting }}^{\text {S }}$	Exsting	${ }_{\text {Exssing }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsting }}$	Exsing	Exsitiog	Exising	Exising	Exsing	${ }_{\text {Exsiting }}^{\text {S85329 }}$	${ }_{\text {Exsting }}$	Exsting	${ }_{\text {Exstita }}$	${ }_{\text {Exsting }}$							so		so	
${ }_{\text {S } 885.329}{ }_{\text {S127 }}$	${ }_{\text {S88,329 }}^{\text {\$127 }}$	${ }_{\text {S88,329 }}{ }_{\text {S127 }}$	${ }_{\text {S88,329 }}^{\text {\$127 }}$	${ }_{\text {S88,329 }}^{\text {\$127 }}$	885,329										\$86,329													
																			so		so				so		so	
$\underset{\substack{\text { Exsting } \\ \text { 996,785 }}}{\text { Es }}$		${ }_{\text {Exsting }}^{\text {S96,785 }}$	${ }_{\text {Exsting }}^{\text {S96,78 }}$	${ }_{\text {Exsting }}^{\text {S96,75 }}$	${ }_{\text {Exssing }}^{\text {s96,75 }}$	${ }_{\text {Exssing }}^{\text {S96,75 }}$	${ }_{\text {Exsting }}^{\text {S96,75 }}$	${ }_{\text {Sxasing }}^{\text {S95 }}$	${ }_{\text {S9x6,785 }}$	${ }_{\text {Exsing }}^{\text {S9685 }}$	${ }_{\text {Exsing }}^{\text {S96,785 }}$	${ }_{\text {Sexincras }}$	$\underset{\substack{\text { Exsing } \\ \text { 996,785 }}}{\text { cem }}$	${ }_{\text {Exsing }}^{\text {S9685 }}$	${ }_{\text {S9x,785 }}^{\text {Exit }}$													
${ }_{\text {s127 }}$	S127	S127																										
Exsising	Exsifing	Exsifing	Exsing	Exsing				Exssing	Exssing	Exsting	Exsing	Exising	Exsting	Exsing	Exsing	Exsing	Exsting	Exsing	so		so				so		so	
${ }_{\text {S24,097 }}$	${ }^{524.097}$	${ }_{\text {S24,097 }}{ }^{\text {S2 }}$	\$24.097	${ }^{524.097}$	${ }_{\text {S24,097 }} 5$	${ }_{\text {S24,097 }} 5$	\$24,097	524.097	524.097	\$24,097	\$24,097	\$24,097	\$24,097	\$24,097	\$24,097	\$24,097	\$24,097	\$24,097										
${ }_{\text {s127 }}^{\text {so }}$	${ }_{\text {\$127 }}^{\text {so }}$	${ }_{\text {S127 }}{ }_{\text {S }}$	${ }_{\text {si27 }}^{\text {so }}$	${ }_{\text {s127 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {so }}$	so	so	so	so									so	so								
Exsiting	Exsiting.	Exsiting	Exsiting	Exssing	Exsiting	Exsiting	Exsiting	Exssing	Exssing	Exsting	Exsting	Exsiting	Exsting	Exsting	Exsiting	Exsting	Exsting	Exsting							so	so		
	$\underset{\$ 16.987}{\$ 127}$	$\underset{\$ 16.987}{\$ 127}$	${ }_{\text {S16,987 }}^{\text {S127 }}$	${ }_{\text {S16,987 }}^{\text {S127 }}$	$\underset{\text { S16,987 }}{\text { S127 }}$	$\underset{\text { s16,987 }}{\substack{127}}$	$\underset{\text { S16,987 }}{\text { S127 }}$	$\underset{\text { S16.987 }}{\substack{\text { S127 }}}$	\$16.987	\$16.987	\$16,987	\$16.987	\$16.987	\$16.987	\$16,987	\$16.987	\$16,987	\$16.987										
${ }_{\text {Exising }}^{\text {so }}$																			so		so				so		so	
553,330	\$53,330	\$55330	\$53330	553,330	\$55330	\$55,330	\$53,330	553.330	553.330	553,330	\$53,330	555330	\$53,330	\$53,330	S553330	${ }_{\text {S5s330 }}$	${ }_{5553330}$	${ }_{\text {S5s,330 }}$										
\$127	S127	S127	5127	S127	\$127	${ }^{\text {S127 }}$	${ }^{\text {S127 }}$	S127	\$127	S127	${ }_{5127}$	\$127																
Exsting	Exsting	Exsting	Exssing	Exsting	Exsting	Exsting	Exsing	Exsing	Exsing	Exssing	Exssing	Exsting	Exsting	Exsing	Exsting	Exsiting	Exsting	Exsting	so		so				so		so	
S42,269	\$42269	\$42,269	\$42269	\$42269	\$42269	\$442269	S42,269	\$42269	\$42269	\$42,269	\$42269	\$42,269	\$42269	\$42,269	\$42,269	\$42229	\$42,269	\$422.29										
	so					50	so	so											so		so							
$\underset{\substack{\text { Exsting } \\ 555306}}{ }$	$\underset{\substack{\text { Exsting } \\ 555306}}{\text { a }}$	$\underset{\substack{\text { Exssing } \\ 555306}}{ }$	${ }_{\text {Exssing }}^{\text {S5,306 }}$	${ }_{\text {Exssing }}^{\text {S5,366 }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exssing }}{ }_{\text {S5306 }}$		${ }_{\text {Exssing }}^{55306}$	${ }_{\text {Exsting }}^{\text {S5, }}$	$\underset{\substack{\text { Exsting } \\ \text { S55,30 }}}{\text { S }}$	${ }_{\text {Exsting }}^{\text {S5, }}$	${ }_{\text {Exssing }} 5$	${ }_{\text {Exsting }}^{\text {S5,306 }}$	${ }_{\text {Exsting }} 5$	$\underset{\substack{\text { Exsting } \\ \$ 55.306}}{ }$		$\underset{\substack{\text { Exsting } \\ 555,306}}{ }$	$\underset{\substack{\text { Exsting } \\ 555.306}}{ }$							so		so	
\$127	S127	\$127	5127	${ }_{5127}$	S127	5127	\$127	\$127	\$127	S127	S127	\$127	S127	5127	S127	${ }_{5127}$	S127	\$127										

| \$15,741,200 | \$15,741,200 |
| :--- | :--- | :--- |

\$24,112.000	\$24,112.000
\$0	
so	so
so	
so	so
\$3,760,000	53,760,000
so	so
so	
so	so
so	so
\$0	
\$0	so

$\mathrm{si}_{\mathrm{so}} \quad$ so
$\operatorname{soc}_{\text {so }}^{\text {so }}$
so $\quad \square \quad$ so \quad 相
so \quad so

2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	Subtotal	Private	Local Govt. State Govt.	Fed Govt.	Tribal Gout.	Military	Subtotal	Private	Local Govt.	State Govt.
	$\underset{\substack{\text { Exsting } \\ \text { So,act }}}{ }$		$\underset{\substack{\text { Exising } \\ \text { S0.a64 }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S0.464 }}}{\text { ata }}$	${ }_{\text {Exssing }}^{\text {So.464 }}$		Exsting	$\underset{\substack{\text { Exsting } \\ \text { spo.as }}}{ }$			$\underset{\substack{\text { Exsing } \\ \text { S90.44 }}}{\text { cest }}$	$\underset{\substack{\text { Exsting } \\ \text { S0.464 }}}{\text { at }}$	$\underset{\substack{\text { Exsting } \\ \text { S00.464 }}}{\text { end }}$	${ }_{\text {Exssing }}$	Exsting		$\underset{\substack{\text { Exsing } \\ \$ 90,464}}{\text { St }}$								so			
\$127	\$127	\$127	S127	S127	S127	S127	5127	S127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127		\$127										
${ }_{\text {Exsingo }}^{\text {so }}$	Exssing	Exsing	Exsing	Exsing	Exsino	Exssing	Exsino	Exssing	Exsing	Exssing	Exsting	Exsitina	Exising	Exsting	Exsting	Exsing		Exsing	so		so				so		so	
									\$14,101		\$14,01	S14, 101	\$14,101	\$14,101	\$14,101	\$14,101	\$14,101	\$14,101										
${ }_{\text {S }} 127$	\$127	\$127	${ }_{\text {S127 }}$	${ }_{\text {S127 }}$	\$127	S127	S127	${ }_{\text {S }} 127$																				
so									so		so																	
${ }_{\text {Exising }}$	$\underset{\substack{\text { Exsting } \\ \text { S67947 }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S6T,977 }}}{ }$	${ }_{\text {Exsting }}^{\text {S67,97 }}$	${ }_{\text {Exsting }}^{\text {S6797 }}$	$\underset{\substack{\text { Exsing } \\ \text { S67,97 }}}{\text { St }}$	$\underset{\substack{\text { Exsting } \\ \text { S67,97 }}}{ }$	$\underset{\text { Exsting }}{\text { S67,97 }}$	$\underset{\substack{\text { Exssing } \\ \text { S67,97 }}}{\text { ate }}$	${ }_{\text {Exsting }}^{\text {S67,97 }}$	$\underset{\substack{\text { Exsting } \\ \text { S67,947 }}}{ }$	$\underbrace{\text { S67,97 }}_{\text {Exsting }}$	${ }_{\text {Exsting }}^{\text {S67,977 }}$	$\underbrace{\text { S67,97 }}_{\text {Exsting }}$	$\underbrace{\text { S67,977 }}_{\text {Exsting }}$	$\underset{\substack{\text { Exsting } \\ \text { S67,97 }}}{ }$	$\underbrace{\substack{\text { S67,97 }}}_{\text {Exsting }}$	$\underbrace{\substack{\text { E67,97 }}}_{\text {Exsing }}$	$\underbrace{\text { S67,97 }}_{\text {Exsting }}$							50		so	
\$127	${ }_{\text {S6 }}$	\$6127	${ }_{\text {S6 }}$	${ }_{\text {S6 }}$																								
so		so		so	so	Exsing	${ }_{\text {Exsing }}^{\text {so }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exsing }}^{\text {So }}$	${ }_{\text {Exsing }}{ }^{\text {so }}$	${ }_{\text {Exssina }}^{\text {So }}$	${ }_{\text {ckiol }}^{\text {sing }}$			Exst				so						so	so		
${ }_{\text {Exsing }}^{\text {E430 }}$		${ }_{\text {Exssing }}^{\text {S46,30 }}$			S45,430	S45,430	\$45,430	${ }_{\text {S45,430 }}^{\text {Sxin }}$	S46,430	\$45,430	\$45,430	\$45,430	\$45,430	\$45,430	\$45,430	${ }_{\text {S45s,430 }}$	${ }_{\text {S45,430 }}$											
so	so	30	\%	,	${ }^{\text {so }}$	so	${ }^{\text {so }}$	so	so										so	so								
Exsitiga	Exsting	Exising	Exsting	${ }_{\text {Exsting }}$	Exising	Exsing	${ }_{\text {Exising }}$	Exsing	Exsting	Exsing	Exsting							so	so									
${ }_{\text {st. }}^{\text {S1233 }}$	${ }_{\text {ST7,033 }}^{\text {S127 }}$	${ }_{\text {S77.033 }}^{\text {\$127 }}$	${ }_{\text {S77.033 }}^{\text {S127 }}$	${ }_{\text {ST7,033 }}^{\text {S127 }}$	${ }_{\text {ST7,033 }}^{\text {S127 }}$	${ }_{\text {st7.033 }}^{\text {S127 }}$	${ }_{\text {St7,033 }}^{\text {S127 }}$	${ }_{\text {ST7, }}^{\text {S123 }}$	${ }_{\text {S72033 }}^{\text {S127 }}$	${ }_{\text {S77,033 }}^{\text {S127 }}$	$\stackrel{\text { s72, }}{\text { si23 }}$	${ }_{\text {S7,033 }}^{\text {S127 }}$	${ }_{\text {st7.033 }}^{\text {S127 }}$	${ }_{\text {S7\%.033 }}^{\text {S127 }}$	${ }_{\text {st7.033 }}^{\text {S127 }}$	${ }_{\text {s72033 }}^{\text {S127 }}$	${ }_{\text {st7.033 }}^{\text {S127 }}$	${ }_{\text {S72033 }}$										
so								so	so																			
${ }_{\text {Existing }}$	$\underset{\substack{\text { Exsing } \\ \text { S63206 }}}{ }$	$\underset{\substack{\text { Exising } \\ \text { S63206 }}}{ }$		$\underset{\text { Exsing }}{\text { S6306 }}$	$\underset{\substack{\text { Exsing } \\ \text { S63206 }}}{\text { ate }}$	$\underset{\text { Exssing }}{\text { S6320 }}$	${ }_{\text {Exssing }}$	$\underset{\substack{\text { Exssing } \\ \text { S63206 }}}{ }$	${ }_{\text {Exsing }}^{\text {Esing }}$	$\underset{\text { Exsting }}{\text { S6320 }}$	${ }_{56 \text { Exsing }}^{\text {S }}$		$\underset{\substack{\text { Exssing } \\ \text { S63,20 }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S63206 }}}{\text { ate }}$	$\underset{\substack{\text { Exsting } \\ \text { S63206 }}}{ }$	$\underbrace{\substack{\text { S6320 }}}_{\text {Exsing }}$	$\underbrace{\substack{\text { S6206 }}}_{\text {Exssing }}$								so	so		
so									so		so																	
Exsing	Exssing	Exssing	Exssing	Exsing	Exsting	Exsing							so		so													
				58,77																								
${ }_{\text {Exsting }}^{\text {som }}$	Exsising	${ }_{\text {Exsining }}^{\text {so }}$	${ }_{\text {Exssing }}^{\text {som }}$	${ }_{\text {Exsining }}^{\text {so }}$	${ }_{\text {Exsing }}^{\text {so }}$	${ }_{\text {Exsting }}^{\text {so }}$	${ }_{\text {Exsing }}^{\text {so }}$	${ }_{\text {Exsting }}^{\text {so }}$	so		Exsing	Exsting		Exsing		Exsting			so		so				so		so	
\$142.609	\$142,609	5142609	\$142209	S142609	\$142.609	\$142.609	\$142.609	\$142,609	Exi42609	S1422099	\$142.609	S142609	${ }_{\text {Staxing }}$	\$142.609	${ }_{\text {Exating }}$	Si42609		${ }_{\text {Exsting }}^{\text {S142,09 }}$							So			
\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	${ }^{127}$	\$127	\$127	\$127	5127												
Exssing	Exsing	Exsing	Exsing	Exsing	Exsing	Exsing	Exssing	Exssing	Exssing	Exssing	Exssing	Exsiting		Exsing	Exsting	Exssing		Exsiting	so		so				so			
\$16.871	S16.871	\$16.871	\$16.871	\$16.871	\$16.871	\$16.871	\$16.871	\$16.871	\$16.871	S16.871	\$16.871	\$16.871	\$16.871	\$16.871	\$16.871	\$16.871	\$16.871	\$16.871										
so										so		so																
$\underset{\substack{\text { Exising } \\ \text { Si6, } 188}}{ }$	${ }_{\text {Exsting }}^{\text {Sili, }}$	$\underset{\substack{\text { Exsting } \\ \text { S16, } 188}}{ }$	${ }_{\text {Exsting }}^{\text {Sili, }}$	$\underset{\text { Exsing }}{\text { S16, } 188}$		$\underset{\text { Exsting }}{\text { S16,188 }}$	$\underset{\text { Exsting }}{\text { Sitire }}$	$\underset{\text { Exsting }}{\text { S16,188 }}$	$\underset{\text { Exising }}{\substack{\text { S1, } \\ \text { Ste }}}$	$\underset{\text { Exsting }}{\text { Sitires }}$	$\underset{\substack{\text { Exsing } \\ \text { S16,188 }}}{\text { chem }}$	$\underset{\substack{\text { Exsting } \\ \text { S16, } 188}}{\text { a }}$	$\underset{\substack{\text { Exsing } \\ \text { S16, } 188}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S16, } 188}}{ }$	$\underset{\substack{\text { Exising } \\ \text { S16, } 188}}{ }$	$\underbrace{\substack{\text { E161.188 }}}_{\text {Exsting }}$	$\underbrace{\text { Sli }}_{\text {Exsting }}$								${ }^{3}$		- 50	
\$16,188			S16,188	\$16,188			\$16,188																					
Exssing	Exssing	Exsing	Exssing	Exsing	Exssing	Exssing	Exo	$\underset{\substack{\$ 0 \\ \text { Exsting }}}{ }$	$\frac{\$ 0}{\text { Exsting }}$	$\begin{gathered} \text { So } \\ \text { Exsing } \end{gathered}$	Exsing	Exsiting	Exsing	Exsing	Exsing	Exsing	Exsting	Exsing	so		so				so		so	
\$14.628	\$14,628	\$14,628	\$14,628	\$14,628	S14,628	S14.628	S14.628	\$14.628	S14.628	\$14.628	\$14.628	\$14.628	\$14.628	S14.628	S14.628	\$14,628	S14,628	\$14,628										
\$127	\$127	\$127	\$127																									
Exssing	Exssing	Exsing	Exsing	Exsing	Exssing	Exssing	Exssing	Exssing	Exsining	Exssing	Exsing				Exsing			Exsing	so						so			
${ }_{\text {s87, }{ }^{\text {S299 }}}$	8877.999	887,699	\$87,699	\$87,699	\$87,699	\$87,699	887,699	s87,999	s87,699	s87,699	s87,699	\$87,699	\$87,699	887,699	s87,699	S87,699	\$87,699	¢87,699										
\$127	${ }_{\text {S127 }}^{127}$																		so									
Exsisiog	Exsing	Exsing	Exsing	Exsing	Exsing	Exssing	Exssing	Exssing	Exssing	Exssing	Exsting	Exising	Exsing	Exsing	Exsing	Exssing	Exssing	Exssing	so						so	so		
\$18.529	\$18,529	\$18,529	\$18.529	\$118.529	\$18,529	\$18.529	\$18.529	\$18.529	\$18,529	\$18,529	\$18.529	\$18.529	\$18,529	\$18,529	\$18.529	\$18.529	\$18.529	\$18,529										
${ }_{\text {Exsing }}$	${ }_{\text {Exsino }}{ }^{\text {som }}$	${ }_{\text {Evsing }}$	${ }_{\text {Exsino }}^{\text {som }}$		${ }_{\text {Exsino }}^{\text {som }}$														so	so								
Exising	Exsting	${ }_{\text {Exsting }}$	Exsting	${ }_{\text {Exsting }}^{\text {Ses }}$	Exsting	Exsting	Exising	Exsting	${ }_{\text {Exsing }}^{\text {E9639 }}$	Exsting	${ }_{\text {Exsting }}^{\text {S9630 }}$	${ }_{\text {Exsting }}^{\text {S9630 }}$	${ }_{\text {Exsting }}^{\text {S9630 }}$	Exsting	Exsting	${ }_{\text {Exsting }}^{\text {S9639 }}$	Exsting	Exising							so	so		
${ }_{\text {s } 96.390}^{\text {S127 }}$	${ }_{\text {s96,390 }}^{\text {S127 }}$	$\underset{\substack{\text { S96,390 } \\ \text { S127 }}}{\text { cis }}$	$\underset{\substack{\text { S96,390 } \\ \text { S127 }}}{\text { cis }}$	$\underset{\substack{\text { S96,390 } \\ \text { S127 }}}{\text { cis }}$	$\underset{\substack{\text { S96,390 } \\ \text { S127 }}}{\text { cis }}$			$\underset{\substack{\text { S96,390 } \\ \text { S127 }}}{\text { cis }}$		$\underset{\substack{\text { S96,390 } \\ \text { S127 }}}{\text { cin }}$	$\frac{598390}{\text { s127 }}$	$\frac{898390}{\text { s127 }}$	$\underset{\text { s96,390 }}{\text { si27 }}$	${ }_{\text {S96,390 }}^{\text {S127 }}$	${ }_{\text {s96.390 }}^{\text {S127 }}$													
so	so	so	so		so		so	so											so		so							
	$\underset{\substack{\text { Exising } \\ \text { S2378 }}}{ }$	${ }_{\text {Exsing }}^{\text {S28,378 }}$	${ }_{\text {Exsting }}^{\text {S28378 }}$	$\underset{\text { Exsing }}{\substack{\text { S2378 }}}$	${ }_{\text {Exsing }}$	Exsting	Exising		${ }_{\text {Exising }}$	${ }_{\text {Exsting }}$	${ }_{5 \times \text { Exsing }}$	$\underset{\substack{\text { Exsting } \\ \text { S28,378 }}}{ }$	$\underset{\substack{\text { Exssing } \\ \text { S28,38 }}}{\text { che }}$	${ }_{\text {Exsting }}^{\text {S22,378 }}$	$\underset{\substack{\text { Exsting } \\ \$ 28.38}}{ }$	${ }_{\substack{\text { Exsing } \\ \text { S28,378 }}}^{\text {a }}$	${ }_{\text {Exsing }}^{\text {S28378 }}$	${ }_{\text {Exsing }}^{\substack{\text { E28378 }}}$							so		so	
${ }_{\text {Exssing }}^{\text {So }}$	Exsing	Exsing	Exsing	Exsing	Exsing	Exsing	Exsting	Exsing	${ }_{\text {Exsitig }}$	Exsing	Exsing	Exsing	Exsting	Exsting	Exsting	Exsting	Exstring	Exsing	${ }^{\text {so }}$	so					so	so		
575.058	577.058	${ }^{577.058}$	\$75.058	877.058	875.058	\$75.058	\$75.058	\$75.058	\$75,.588	\$75.058	\$75.058	575.588	\$75,.588	\$75.058	875.058	\$75.058	\$75.058	875.058										
${ }_{\text {S127 }}$	${ }_{8127}$	${ }_{\text {S127 }}{ }_{\text {S }}$	${ }_{\text {S127 }}$	${ }_{8127}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}{ }_{\text {S }}$	${ }_{\text {S127 }}{ }_{\text {S }}$	\$127	${ }_{\text {S127 }}$	${ }_{\text {S127 }}{ }^{\text {2 }}$	\$127	\$127	8127	\$127	\$127	\$127		\$127										
Exsting	Exsing	Exsitiog	Exsing	Exsing	Exsing	Exsing	Exssing	Exsing	Exsting	Exsing	Exsting	Exsiting	Exsting	Exsing	Exsting	Exsiting	Exsing	Exsitina	so						so		so	
${ }_{\text {S393788 }}^{\text {S127 }}$	${ }_{\text {S39,788 }}^{\text {S127 }}$	${ }_{\text {S39,788 }}^{5127}$	\$39.788		${ }^{539,788}$	${ }_{\text {S39,788 }}^{\text {S127 }}$	${ }_{\text {S399788 }}^{\text {S127 }}$	${ }_{\text {S39,788 }}^{\text {S127 }}$	${ }_{\text {S397888 }}^{\text {S127 }}$	${ }_{\text {S39,788 }}^{\text {S127 }}$	${ }_{\text {S39,788 }} 8$	${ }_{\text {S39,788 }} 8$	${ }_{\text {S39,788 }} 8$	${ }_{\text {S39,788 }}^{\text {S127 }}$	${ }_{\text {S39,788 }}^{\text {S127 }}$	${ }_{\text {S397888 }} 8$	${ }_{\text {cke }} 539788$											
so		so	so			so													so		so							
Exitiog	Exsting	${ }_{\text {Exsting }}^{\text {S36.50 }}$	${ }_{\text {Exsting }}^{\text {S36.57 }}$	${ }_{\text {Exsing }}^{\text {S }}$	${ }_{\text {Exsting }}^{\text {S36,50 }}$	${ }_{\text {Exsting }}$	Exsting	${ }_{\substack{\text { Exsting } \\ \text { S36,570 }}}^{\text {a }}$	${ }_{\text {Exsing }}^{\text {S }}$	${ }_{\text {Exsing }} \mathbf{5 8 , 5 7 0}$	${ }_{\text {Exsing }}^{\text {S }}$ S.50	${ }_{\text {Exising }}^{\text {S36,570 }}$	${ }_{\text {Exsing }}^{\text {S36.50 }}$	$\underset{\substack{\text { Exsting } \\ \text { S36.570 }}}{\text { a }}$	$\underset{\substack{\text { Exsting } \\ \text { S36.50 }}}{ }$	${ }_{\text {Exsing }}^{\text {S36.50] }}$	${ }_{\text {Exising }}^{\text {S86,50 }}$	$\underset{\substack{\text { Exsing } \\ \text { S36,570 }}}{\text { a }}$							so		so	
Exsiniog	Exsing	Exsiting	Exsing	Exsting	Exsiting	Exsiting	Exsing	Exsing	Exsiting	Exsing	Exsiting	so						so	so									
\$31.694	\$31.64	\$31.64	831.694	\$31,694	831.64	531.64	531.69	531.64	531.694	531.69	531.694	533.694	\$33,694	\$31,694	\$31,94	\$33,694	531.69	\$31.694										
																			so	so								
Exssiting	Exssing	Exssing	Exsing	Exsting	Exssing	Exssing	Exsting	Exsing	Exsting	Exsing							so	so										
	${ }^{873323}$	${ }^{873,323}$	${ }^{873,323}$	${ }_{\text {S73,323 }}$	${ }^{877.323}$	${ }_{\text {873233 }}$	${ }_{\text {873,323 }}$	873.323	577.323	873,323	573.323	577.323	\$73.323	873.323	${ }^{873323}$	\$73.323	\$73,323	873,323										
						so													so	so								
${ }_{\substack{\text { Existing } \\ \$ 123,27}}$	${ }_{\text {Exssing }}^{\text {Sizarat }}$	${ }_{\text {Exising }}^{\text {S123,72 }}$	${ }_{\text {Exxsing }}^{\text {Si23,27 }}$	${ }_{\text {Exxsing }}^{\text {Si23,27 }}$	$\underset{\substack{\text { Exssing } \\ \text { S123,27 }}}{\text { S }}$	Exssing	Exsiting	Existing	${ }_{\substack{\text { Exssing } \\ \text { S123,727 }}}^{\text {E }}$	${ }_{\text {Exssing }}^{\text {Si23,27 }}$	${ }_{\text {Exsting }}^{\text {S123,727 }}$	$\underset{\substack{\text { Exsting } \\ \text { S123,27 }}}{ }$	${ }_{\text {Exsting }}^{\text {S123,72 }}$	${ }_{\text {Existing }}^{\text {\$123,72 }}$	${ }_{\text {Existing }}^{\text {S12,27 }}$	$\underset{\substack{\text { Exsting } \\ \text { S123,27 }}}{\text { a }}$	$\underset{\substack{\text { Existing } \\ \$ 123,72}}{ }$	$\underset{\substack{\text { Existing } \\ \text { S123.27 }}}{\text { a }}$							so	so		
\$127	\$127																											
Exssing	Exsing	Exsing	Exsing ${ }^{\text {so }}$	Exsing ${ }^{\text {so }}$	Exsing ${ }^{\text {so }}$	Exssing	Exssing	Exssing	Exssing	Exssing		Exising	Exsiting	Exsiting	Exsiting	Exsiting	Exsting	Exsitig	so						so	so		
\$75.453	\$75.433	\$75.433	\$75.433	575.453	\$75.453	\$75.453	\$75.453	\$75.453	\$75,453	\$75.453	\$87.453	875.453	\$75.453	\$75.453	\$75.453	\$75,453	\$75.453	875.453										
	${ }_{5127}$	${ }_{5127}$	${ }_{\text {S127 }}$	${ }_{\text {S127 }}^{127}$	${ }^{127}$	${ }_{5127}$	${ }_{5127}$	\$127																				
Exsifing	Exsing	Exsifing	Exsifing	Exsing	Exsing	Exsting	Exssing	Exsiting	Exsting	Exsting		so		so				50		so								
${ }_{\text {S263,422 }}^{\text {s127 }}$	${ }_{\text {S223,492 }}^{5127}$	${ }_{\text {S223,492 }}^{\text {S12 }}$	${ }_{\text {S263,492 }}^{\text {s127 }}$	${ }_{\text {S263,492 }}^{\text {s127 }}$	${ }_{\text {S263.422 }}^{5127}$	${ }_{\text {S263,492 }}^{5127}$	${ }_{\text {S263,492 }}^{\text {s27 }}$	${ }_{\text {S223,492 }}^{\text {s127 }}$	${ }_{\text {S263,492 }}^{\text {s } 27}$	${ }_{\text {S223,492 }}^{\text {s127 }}$	${ }_{\text {S263,492 }}^{\text {si27 }}$	${ }_{\text {\$263,492 }}^{\text {s }}$	${ }_{\text {S283,492 }}^{5127}$	${ }_{\text {S263,492 }}^{\text {S12 }}$			${ }_{\text {S263,492 }}^{\text {sin }}$	${ }_{\text {S223,492 }}^{\text {S }}$										
so	so	so	so			so	so		so										so	so								
$\underbrace{}_{\substack{\text { Existing } \\ \text { S127,93 }}}$	Exxsing	$\underset{\substack{\text { Exxitiog } \\ \text { s127,93 }}}{ }$	$\underset{\text { Exxsing }}{\text { S127993 }}$	Exxsing	$\underset{\substack{\text { Exxsing } \\ \text { si27,93 }}}{ }$	Exxsing	Exsiting	Exxsing		Exxsing	$\underbrace{}_{\substack{\text { Exxting } \\ \text { S12793 }}}$	$\underbrace{\substack{\text { S127,933 }}}_{\text {Exxsing }}$	$\underbrace{}_{\substack{\text { Exsting } \\ \text { S127993 }}}$	$\underset{\substack{\text { Exxitiog } \\ \text { s127,93 }}}{ }$	$\underset{\substack{\text { Existing } \\ \text { \$17,993 }}}{\text { a }}$	${ }_{\substack{\text { Exsting } \\ \$ 127,93}}^{\text {a }}$	$\underset{\substack{\text { Exsting } \\ \$ 127,993}}{ }$	$\underset{\substack{\text { Exsting } \\ \$ 127,93}}{\text { and }}$							so	so		
${ }_{\text {\$127 }}$	${ }_{\text {S127 }}{ }^{\text {S }}$																											
Exsino	Exsising	Exssing	Exssing	Exsing	Exssing	Exsting	Exsing	Exsing	Exsising	Exsing							Exsting	Exsitig	so		so				so		so	
${ }^{540.568}$	\$40.568	\$40.568	${ }^{500.568}$	\$40.568	\$40.568	${ }^{500.568}$	${ }^{540,568}$	\$40.568	\$40.568	\$40,568	540.568	540.568	540.568	\$40.568	\$40.568	\$40,568	\$40,568	\$40,568										
${ }_{\text {s127 }}^{\text {sol }}$	${ }_{\text {si27 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {si }}$	${ }_{\text {S127 }}^{\text {s0 }}$	${ }_{\text {si27 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {so }}$	${ }^{8127}$	\$127						so		so													
Exising	Exssing	Exssing	Exssing	Exsing	Exssing	Exsing	Exsing	Exsing	Exsing	Exsting	Exsing	Exsing	Exsing	Exsing	Exsting	Exsing	Exsing	Exsing							so		so	
\$42:209	\$429209	\$429099	\$429209	\$42.209	S42:909	\$42,209	\$42:309	\$42,209	\$42:209	\$42:209	\$422,909	\$42,909	\$42:209	\$42,209	\$42:399	\$42.909	\$42:099	S42.909										
																			so		so							
	${ }_{\text {Exsting }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsting }}$	$\underset{\substack{\text { Exsing } \\ \text { S68, } \\ \text { S6 }}}{ }$	${ }_{\text {Exsing }}^{\text {S68,166 }}$	${ }_{\text {Exsting }} 86$	${ }_{\text {Exising }} 868.166$	${ }_{\text {Exsting }}^{\text {S68,166 }}$	Exsting	${ }_{\text {Exsing }} 868.166$	${ }_{\text {Exsing }}^{\text {S68,166 }}$	${ }_{\text {Exsing }}^{\text {S68, } 66}$	$\underset{\text { Exsing }}{\text { S68,166 }}$	$\underset{\substack{\text { Exsting } \\ \text { S68,166 }}}{ }$	${ }_{\text {Exsting }}^{\text {S68,166 }}$	${ }_{\text {Exsing }}^{\text {S68,166 }}$	$\underset{\substack{\text { Exsing } \\ \text { S68,168 }}}{ }$	Exising							so		so	
${ }_{\text {S127 }}^{50}$	\$	\$127	\$127	S\$127	\$127	\$127	\$127	\$127	${ }_{\substack{\text { S127 } \\ 50}}$	${ }_{\text {S127 }}{ }_{\text {S0 }}$	\$127	\$127	\$127	\$127	\$127	S127	s127											

2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	Subtotal	Private	Local Govt. State Govt.	Fed Govt.	Tribal Govt.	Military	Subtotal	Private	ocal Govt.	ate Govt.
${ }_{\text {Exsing }}$	$\xrightarrow{\text { Exsitiga }}$ S20,967	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$ E20.96	${ }_{\text {Exsting }}^{\substack{\text { Ex2.967 }}}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exssing }}$	$\xrightarrow{\text { Exsting }}$ S20.967	${ }_{\text {Exsing }}$ Ex2.967	${ }_{\text {Exssing }}^{\text {S20,96 }}$	${ }_{\text {Exssing }}^{\text {E20.967 }}$	${ }_{\text {Exsing }}$ Ex2,967	${ }_{\text {Exsersing }}$	$\xrightarrow{\text { Exsting }}$ S20.967	$\underset{\text { Exsitiga }}{\substack{\text { E20,967 }}}$										
Exsting	Exssing	${ }_{\text {Exssing }}^{\text {so }}$	${ }_{\text {Exssing }}^{\text {so }}$	Exsing	Exssing	Exssing	Exssing	Exssing	Exssing	Exssing	Exsiting	Exsiting	Existing	Exsing	Exsiting	Exsting	Exsiting	Exsing	so						so	so		
S140,042		S140.042	S140.042	\$140.042	\$140.042	\$140,042	\$140.042	\$140.042	\$140.042	S140,042	\$140.042	S140.042	S140.042	S140.042	S140.042	5140.042	\$140.042	S140, 5							so			
		s ${ }_{\text {S }}{ }^{27}$	${ }_{\text {si27 }}^{\text {S0 }}$	${ }_{\text {si27 }}{ }_{\text {S }}$	${ }_{\text {S }}^{5127}$	so																						
Exssing	Exssing	Exssing	Exssing	Exsiting	Exssing	Exssing	Exsing	Exssing	Exssing	Exssing	Exsiting	Exsiting	Exssing	Exsting	Exsing	Exsting	Exssing	Exsting	so						so	so		
S16.676	\$16.676	\$16.676	\$16,676	\$16,676	\$16,676	\$16.676	\$16,676	\$16,676	\$16.676	S16.676	\$16,676	\$16.676	\$16.676	\$16.676	\$16.676	\$16.676	\$16,676	\$11,676										
so	so	so	so					so	so										so	so								
Exsitiga	Exsing	${ }_{\text {Exsining }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsitiga }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}^{\text {S }}$	${ }_{\text {Exsing }}^{\text {S36082 }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsing }}$	${ }_{\text {Exsting }}^{\text {S30.082 }}$	${ }_{\text {Exsing }}^{\text {S30.082 }}$	${ }_{\text {Exsting }}^{\text {S36082 }}$	${ }_{\text {Exscing }}^{\text {Es6082 }}$	Exsting	${ }_{\text {Exsitig9 }}$	$\underbrace{\text { S36082 }}_{\text {Exsing }}$	${ }_{\text {Exsing }}^{\substack{\text { Ese.as }}}$							so	so		
\$380.082	\$830.082																											
so	so	so	so	so	so	${ }_{\text {Exsing }}$	so	so	so	so									so	so								
${ }_{\text {Exsting }}$	Exsting			${ }_{\substack{\text { Exsting } \\ \text { S0 } \\ \text { S }}}$	Exsting		${ }_{\text {Exsting }}$ S9089	Exising	Exsting	Exsting		${ }_{\text {Exsting }}^{\text {Sos }}$	${ }_{\text {Exsing }} 59085$	${ }_{\text {Exssing }} 590859$	${ }_{\substack{\text { Exsting } \\ \text { So } \\ \text { Sos }}}$	${ }_{\text {Exsting }}$ S90859	${ }_{\substack{\text { Exsing } \\ \text { S90899 }}}$	Exsting							so	so		
${ }_{\text {s }}^{\text {s00.859 }}$	${ }_{\text {S90,859 }}^{\text {S127 }}$	${ }_{\text {s } 90.859}$			${ }_{\text {s90.859 }}^{\text {S127 }}$	${ }_{\text {s90.859 }}^{\text {S127 }}$	\$90,859	590.859	590,859																			
so									so	so																		
	$\underset{\substack{\text { Exsting } \\ \text { S25.03 }}}{\text { S }}$	${ }_{\text {Exsing }}^{\text {E25,03 }}$	${ }_{\text {Exssing }}^{\text {S }}$	$\underset{\substack{\text { Exsing } \\ \text { S25.063 }}}{\text { E }}$	${ }_{\text {Exsing }}^{\text {S25,63 }}$		$\underset{\text { Exsing }}{\text { S25, }}$	${ }_{\text {Exssing }}^{\text {S25,63 }}$	$\underset{\text { Exsting }}{\text { S25,03 }}$	${ }_{\text {Exsitiga }}^{\text {S25,63 }}$	$\underset{\substack{\text { Exsting } \\ \text { S25.063 }}}{\text { a }}$	$\underset{\substack{\text { Exsting } \\ \text { S25.033 }}}{ }$	$\underset{\substack{\text { Exssing } \\ \$ 25.063}}{ }$	$\underset{\substack{\text { Exssing } \\ \$ 25,063}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S25, }}}{ }$	$\underset{\substack{\text { Exsting } \\ \text { S25, } \\ \text { cos }}}{ }$	$\underbrace{\text { S25.063 }}_{\text {Exsting }}$	$\underset{\substack{\text { Exsing } \\ \text { S25,063 }}}{\text { en }}$							so	so		
		${ }_{\text {S25032 }}^{\text {\$127 }}$	${ }_{\text {ckis }}$	${ }_{\text {S22, }}^{\text {S127 }}$																								
so		so				so	so												so									
$\underset{\substack{\text { Exsting } \\ \text { S185,69 }}}{\text { a }}$	$\underset{\substack{\text { Exsting } \\ \text { S185,69 }}}{\text { a }}$	${ }_{\text {Exsting }}^{\text {S185,69 }}$	${ }_{\substack{\text { Exsting } \\ \text { S185,69 }}}^{\text {a }}$	$\underset{\text { Exsting }}{\text { si85,69 }}$	${ }_{\text {S185,669 }}^{\text {Exing }}$	${ }_{\text {S185,669 }}^{\text {Exing }}$	${ }_{\text {Exsting }}^{\text {Si85,69 }}$	${ }_{\text {S185, }}^{\text {Exisig }}$	$\underset{\text { Exising }}{\text { Elic69 }}$	${ }_{\text {Slissing }}^{\text {Ex69 }}$	${ }_{\text {Exsting }}$	${ }_{\text {Sliss, }}^{\text {Exing }}$	${ }_{\text {Sliss, }}^{\text {Exing }}$		${ }_{\text {Exsting }}^{\text {Elis669 }}$	$\underset{\substack{\text { Exsining } \\ \text { S185,69 }}}{ }$	$\underbrace{}_{\substack{\text { Exsting } \\ \text { Si85,69 }}}$	${ }_{\text {Exsinga }}^{\text {Elis.669 }}$							so			
Exssing	Exssing	Exssing	$\frac{\$ 0}{}$	$\frac{\$ 0}{\text { Exsing }}$	Exssing	Exssing	$\frac{s 0}{\text { Exiting }}$	Exo	Exsing	Exssing	Exsing	Exsting						Exsing	so	so					so	so		
${ }_{\text {Exser }}{ }_{\text {Exi2 }}$	${ }_{\text {Exser }}$	${ }_{\text {Exsenti2 }}$	${ }_{\text {Exa }}^{\text {Exs.272 }}$					${ }_{\text {Exsersi2 }}$	${ }_{\text {Lexser }}^{\text {E472 }}$	${ }_{\text {Exser }}$		${ }_{\text {Exs }}$	${ }_{\text {Exsersing }}$		${ }_{\text {Exsing }}^{\text {E48272 }}$										so			
${ }_{\text {S127 }}^{\text {so }}$		${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {S0 }}$	${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {S127 }}^{\text {So }}$	${ }_{\text {S127 }}^{\text {S0 }}$	${ }_{\text {S127 }}^{\text {so }}$	${ }_{\text {\$127 }}{ }_{\text {so }}$	${ }_{\text {S127 }}^{\text {S0 }}$	${ }_{\text {S127 }}^{\text {sol }}$	\$127	${ }^{127}$	\$127	${ }^{5127}$				so	so								
Exising	Exsting	Exsisiog	Exsting	Exsing	Exsting	Exising	Exssing	Exsing	Exsting	Exsting	Exsting	Exising	Exsting	Exsting	Exsina	Exsting	Exsiting	Exsing							so	so		
S175.033	\$175.033	${ }_{\text {S175.03 }}^{\text {S127 }}$	\$175.033	\$175.003	\$175.033	\$175.003	${ }_{\text {S }}^{\text {S175.003 }}$	\$175.003	\$175.003	\$175.033	${ }_{\text {S }}^{\text {S175.003 }}$ S127	\$175.033	\$175.003															
so	so	so																	so		so							
${ }_{\text {Exstriga }}$	${ }_{\text {Exstitag }}$	${ }_{\text {Exssitigy }}$	${ }_{\text {Exsiting }}$	Exsing	Exsting	${ }_{\text {Exsinga }}$	Exsing	${ }_{\text {Exssing }}$	Exsing	${ }_{\text {Exsting }}$	Exstring	Exsting	${ }_{\text {Exstitag }}$	${ }_{\text {Exsting }}$	${ }_{\text {Exsing }}$	Exsting	${ }_{\text {Exsting }}$	Exstin9							so		so	
${ }_{\text {s }}^{533.254}$	${ }_{\text {S33.254 }}^{\text {S127 }}$			(833.54)	${ }_{\text {S33,254 }}^{\text {S127 }}$	${ }_{\text {S33,254 }}$	${ }_{\text {S33,254 }}^{\text {S127 }}$	${ }_{533.254}$	\$33,254	533.254	533.254	S33,254	${ }^{533.254}$	${ }^{933.254}$	\$33.254	\$33.254	\$33.254	\$33.254										
	so	so						so											so		so							
${ }_{\text {Existing }}$	${ }_{\text {Existing }}$	Exising	${ }_{\text {Exssing }}$		Exsting	Exsting	${ }_{\text {Exsting }}^{\text {E40.958 }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exsting }}{ }_{\text {S40.58 }}$	Exising	${ }_{\text {Exsting }}^{\text {S40.58 }}$	${ }_{\text {Existing }}$	${ }_{\text {Exssing }}$	${ }_{\text {Exsting }}$	Exsting	Exsting	Exsting	Exsting							so		so	
${ }_{\text {Exssing }}^{\text {so }}$	Exssing	Exsising	${ }_{\text {Exssing }}^{\text {so }}$	Exsing	${ }_{\text {Exsising }}^{\text {so }}$	Exsising	Exsing	Exssing	Exssing										so		so				so		so	
\$62413	\$62413	\$62.413	\$622,43	\$62,4313	\$62413	\$62413	\$62,43	562413	S62413	S62413	S62413	S62413	${ }_{562413}$	${ }_{\text {S62,413 }}$	S62413	S62413	S62413	S62413							so		80	
\$13,298,520	\$13,298,392	\$13,667,650	\$15,589.506	\$15,599,379	\$15,588.996	\$15,588,399	\$15,587,976	\$15,587,721	\$15,587,084	\$15,586.829	\$14,85, 3 ,31	\$13,977,179	\$13,888,846	\$13,888.591	\$13,888,463	\$13,888,386	\$11,887,953	\$13,768, 842	\$335,388,090									
\$505.922	S505,922	${ }_{\text {S }}^{5050,922}$	${ }^{55415.593}$	S544.593	S541,593	${ }_{\text {S }}^{554,593}$	S544,593	${ }^{\text {S54,1593 }}$	${ }_{\text {S }}^{\text {S54, } 1.593}$	${ }_{\text {S }}^{554.593}$	${ }^{\$ 253,435}$	S336.677	${ }_{\text {S }} 535.578$	${ }^{\text {S30,5771 }}$	${ }^{533.671}$	${ }^{533.671}$	${ }_{\text {S2 }}^{5356571}$	<2195800										
	s2,380, 366	${ }_{\text {S25, }}$	${ }_{\text {S2,469230 }}$	\$2.469.230	\$2.469.230	${ }_{\text {S2,469,230 }}$	${ }_{\text {S2,459,230 }}$	\$2.469,230	\$2,469,230	\$2.469,230	\$2,4992,230	${ }_{\text {che }}^{\text {s2,4992,230 }}$	${ }^{\text {S2, }}$ \$299230	${ }_{\text {s2, }}$	\$22.66, 230	\$22,66.230		s2, ${ }^{\text {s269,230 }}$	\$55,.626,482									
	${ }_{\text {S1, } 52.12787}^{\text {S27 }}$		${ }_{512}^{52792959}$				\$1.279.6.697	${ }_{\text {S12 } 27.50509}$	${ }_{\text {S12,27.609 }}^{51.275}$			${ }_{\text {S117.203 }}^{\text {S1,020 }}$		${ }_{\text {cresen }}^{5882}$	\%8892	${ }_{\text {s88,312 }}^{575}$	${ }_{588.312}^{5765}$	s765										
\$3,92, 180	S3.962.180	${ }^{53} 3.822 .180$	\$4,982,180	\$4,982,180	S4,982, 180	\$4,982,180	\$4,982,180	S4,982,180	s4,982, 180	S4.982, 180	s4,982, 180	s4.982, 180	S4, 882.180	\$4,982, 180	S4,982, 180	S4, 882.180	84,982, 180	\$4,982, 180	si04,488,400									
S4,024,366			${ }_{\text {S4, } 111,190}^{5.610}$	${ }_{\text {S4, } 4113.190}^{5.482}$	\$4,113,190	${ }_{\text {S4, } 113,190}$	${ }_{\text {S4, }}^{5413,190}$ (4,77	\$4.13,190	\$4,113,190	${ }_{\text {S4, }}^{54,13,190}$	${ }_{\text {S }}^{54,113,900}$ \$3,952			${ }_{\text {S4, } 11.13,190}^{\text {s,315 }}$	${ }_{\text {S4, }}^{5411,190}$ (187				\$100.604,768									
S1,697,218	\$1,697,218	S1.697,218	\$1,82, 202	\$1,82, 202	\$1,82, 202	\$1,821,202	51,821,202	\$1,821,202	\$1,82, 202	\$1,821,202	\$1,049,831	\$211,934	S123,983	S12,9833	\$123,983	S12,9,93	${ }^{\text {s123,983 }}$		\$27,318.026									
S5,187,980 S6,90,65	S5,187,980	${ }_{\text {s, }}^{56,187,9890}$		\$7,17,7980 $\$ 6,58,420$		S7,17,980				S7,178,9820	S7,17,980 S6,52,420	S7,17,980	$\xrightarrow{57,17,980} \mathbf{S 6 , 5 2 , 4 2 0}$						S147,630,400									
58.659	s,542	56,332	s7,904	s7,777	57,34	S6,757	${ }_{\text {sfi,375 }}$	56,120	S5.822		Stisf.100		St.0.4.62	S4,207	S4,080		${ }_{\text {S3,750 }}$	S1353.4292	S3168.414									
\$13,29,520	s13,298,32	\$13,667,650	\$15,589,506	\$15,59,379	S15,588,966	\$15,588,359	S15,587,976	s15,587,721	\$11,587,084	\$15,566,829	\$14,81,3,31	\$13,977,179 Reporting Cos	\$13,888,846 ts from "Lan	$\$ 13,888,591$ dfills Report	\$13,888,463 g_Only" work	sheet	\$13,87,953	\$13,76,842	\$335,388,090									
												$\underset{\substack{\text { Subtotals } \\ \$ 139,178}}{\text { S }}$	Private	Local Govt	State govt.	Fed Govt.	Tribal Sovt.	Millary	\$27,318,026						7.63,400			
													\$10.098						32.10,020	88,12, 895					\$14.00, 400	\$43,172,000		
														87.994	${ }^{53,769}$						\$16,736.415						\$95.712.520	
																\$12.641												
																		\$24,676						\$2,45,776				
\$1.63,7i8	S1.663,788	\$1.68,718	\$1.68,718	\$1,663,788	\$1.663,788	\$1,68,718	\$1,663,718	S1,663,718	\$1,663,718	s $1.663,78$	\$8923,388	s87,951	so	50	so	so	so	so	\$24,95,744									
S4,99,980	${ }_{\text {S4, }}^{539093981}$	\$4.09, 9 ,980		${ }_{\text {S4,099,980 }}^{\text {S54311 }}$	${ }^{54.091 .980}$	S4.99,980		\$4.091,980	${ }_{\text {S4,09, } 1980}$	\$4,99,980		S4.999,980	${ }_{\text {S4, }}^{5 \times 909,983}$		54,991,980	54.091,988		${ }^{54,099,988}$	\$91, 5 ¢7, 4000									
${ }_{\text {s }}^{\text {S354,317 }}$	${ }_{\text {s } 534.317}^{\text {S765 }}$	${ }_{\text {¢ } 854.311}^{\text {S765 }}$	${ }_{\text {s } 854.411}^{\text {S765 }}$		${ }_{\text {s354,317 }}^{\text {S765 }}$		${ }_{\text {S354332 }} 5$	${ }_{5854.411}^{5882}$	${ }_{\text {S }}^{534.317}$	${ }_{\text {s }}^{534.318}$		${ }_{\text {S354.313 }} 5882$	${ }_{\text {s }}^{\text {S34.431 }}$	${ }_{\text {S354,311 }}$	${ }_{\text {s344.315 }}^{\text {S25 }}$	${ }_{\text {s354315 }}^{\text {S25 }}$	${ }_{\text {S354,311 }}^{\text {S25 }}$		${ }_{\text {s8.999,405 }}^{\text {si4,661 }}$									
S6,110,775	S6,10,775	\$6,110,775	\$6,110.775	S6,110,775	\$6,110.775	S6.110.520	S6,110,392	S6,110,32	56,10,392	S6,110,392	\$5,399021	\$4.534,625	\$4,446.546	\$4,46,546	\$4,466.546	\$4,466.546	${ }^{\$ 4.446 .546}$	\$4,464,419	\$125.568.241									
\$33.500				\$157,483	\$157,483	\$157,483				S157,483	\$157,483	\$123.983	S123,983	S123,983	\$123.983	\$122,983	\$123,983		52362,252									
		$\xrightarrow{\text { S1,096,000 }} \mathrm{S6,20,109}$	$\substack{\text { \$3,086,000 } \\ \text { S6,288,19 }}$	¢			\$3,88,000	S3,086.000	${ }_{\text {S3,086,000 }}^{56,28,109}$	S3,086000	S.		¢3,086,000		${ }_{\text {S }}^{\text {s.086,000 }}$	$\xrightarrow{\frac{53}{53,086,000}} \mathbf{5 6 , 2 8 , 1 0 9}$	${ }_{\text {S3,066000 }}^{56,28,109}$	${ }_{\text {S }}^{53,086,000}$ s6,28,109	\$55.952.000									
	${ }_{\text {S7, } 187.6778}^{\text {s7 }}$	$\frac{57.267}{5756.876}$	$\stackrel{\text { sf7.139 }}{ }$		${ }_{59,468229}$	${ }_{\text {594772789 }}^{5689}$		${ }_{\text {S9, } 5773737}$			${ }_{\text {S9476.7309 }}$	¢4.462	${ }_{\text {4 } 44.207}^{594299}$	${ }_{\text {s9442.042 }}$	$\frac{53,825}{59.41977}$	${ }_{\text {S3 }}^{\text {S4,977 }}$	$\frac{53,315}{\text { S41407 }}$	$\frac{53,315}{}$	\$1557.73									
\$11,298,520	\$13,298,392	\$13,667.650	\$15.589.506	\$15.589,379	\$15.588.996	\$15.588,359	\$15.587,976	\$15.587,721	\$15.587,084	\$15.568.829	\$14.815.331	\$13.977,19	\$13,888,846	\$13.888,591	\$13.888,463	\$13.888,336	\$13.887		335,.388.090 T	,	Controm ${ }^{\text {a }}$.							

1. Waste-in-Place (WIP) Report Preparation \& Submittal

Assumptions:
) Landfills are currently required to submit periodic WIP reports to the California Integrated Waste Management Board.
This cost estimate assumes that a recent CIWMB report will either be updated or copied and submitted to ARB.
) No allowance is given for office overhead, supplies, etc., since these are minimal cost items given the short duration and scope of this work assignment.
Engineering Staff Time:
Engineering Staff Tim
Clerical Staft Time:
2 hours @
1 hours @
$61.77 \mathrm{\$} / \mathrm{hr} .=$
$43.85 \mathrm{~S} / \mathrm{hr} .=$ \qquad

Ref.: USDL, 2009b
. Calculation of Landfill Gas Heat Input Capacity
Assumptions:
Time needed to prepare and submit Calculation as outtined in proposed regulation
2) No allowance is given for office overhead, supplies, etc., since these are minimal cost items given the short duration and scope of this work assignment.

Galculation of Landfill Gas Heat Input Capacity Cost:
$65.14 \mathrm{\$} / \mathrm{hr} .=$
$29.78 \$ \mathrm{shr} .=$

Ref.: USDL, 2009b

3a. Surface Emissions/Contol \& Collection System Monitoring--Capital Cost
ssumptions:
Monitoring equipment to be used by landfills will be the same as used by ARB for reg enforcement
Monitoring Equipment Capital Cost: $\$ 48,000$

Cludes the following:

1) Calibration System
(3) Vacuum Measuring Devices
2) Portable Oxygen Analyzers

Spare Parts
Tools
(3) Datalogging Systems

$@$	$\$ 5,000$ ea. $=$	$\$ 15,000$
$@$	$\$ 3,000$ ea. $=$	$\$ \$, 000$
$@$	$\$ 1,000$ ea. $=$	$\$ 3,000$
$@$	$\$ 3,500$ ea. $=$	$\$ 10,500$
	$\$ 500=$	$\$ 500$
	$\$ 1,000=$	$\$ 1,000$
$@$	$\$ 5,000=$	$\$ 15,000$
		$\$ 88,000$

3b. Surface Emissions/Contol \& Collection System Monitoring--Cost per Landfill-Acre
hcludes calibration of monitor and downloading of monitoring data from datalogger

4. Upgrade of Existing Collection/Control System--Capital Cost

Assumptions:
For landilils with existing open flare systems, work to be performed will consist of changeout of existing control device to a new enclosed flare.
Ref.: John Zink Co. "ZTOF" model

Flare Size (MM Btu/Hr.)	Enclosed Flare Cost Lookup Table ${ }^{6}$					
	ivered	Flare		Start-up		
	Flare Cost	Instalataion ${ }^{2}$	Permits ${ }^{3}$	Source Test ${ }^{4}$	Misc. ${ }^{5}$	Total Cost
3.0	\$174,590	\$30,000	\$5,000	\$25,000	\$50,000	\$284,590
6.1	\$189,405	\$33,462	\$6,000	\$25,000	\$50,000	\$303,867
10.6	\$207,490	\$36,924	\$7,000	\$25,000	\$50,000	\$326,414
18.2	\$224,486	\$40,386	\$8,000	\$25,000	\$50,000	\$347,872
27.3	\$242,571	\$43,848	\$9,000	\$25,000	\$50,000	\$370,419
39.5	\$265,016	\$47,310	\$10,000	\$25,000	\$50,000	\$397,326
51.6	\$285,281	\$50,772	\$15,000	\$25,000	\$50,000	\$426,053
66.8	\$305,546	\$54,234	\$20,000	\$25,000	\$50,000	\$454,780
81.9	\$325,812	\$57,696	\$25,000	\$25,000	\$50,000	\$483,508
100.2	\$346,077	\$61,158	\$30,000	\$25,000	\$50,000	\$512,235
115.4	\$366,342	\$64,620	\$35,000	\$25,000	\$50,000	\$540,962
136.6	\$386,607	\$68,082	\$40,000	\$25,000	\$50,000	\$569,689
182.1	\$596,090	\$71,544	\$45,000	\$25,000	\$50,000	\$787,634
364.3	\$1,001,430	\$75,000	\$50,000	\$25,000	\$50,000	\$1,201,430
546.5	\$1,001,430	\$150,000	\$55,000	\$50,000	\$50,000	\$1,306,430
728.6	\$1,406,770	\$225,000	\$60,000	\$75,000	\$50,000	\$1,816,770
910.8	\$1,812,110	\$300,000	\$65,000	\$100,000	\$50,000	\$2,327,110
	\$2,217,450	\$375,000	\$70,000	\$125,000	\$50,000	\$2,837,450

	Delivered Flare				
	Flare Stack \& Controls	Cost	(enstruction	Tranportation	live
		Gas System	Skid	To Site	Flare Cost
3	\$75,000	\$1,000	\$75,000	\$10,000	\$174,590
6	\$80,000	\$1,000	\$80,769	\$13,077	\$189,405
11	\$88,000	\$1,000	\$86,538	\$16,154	\$207,490
18	\$95,000	\$1,000	\$92,307	\$19,231	\$224,486
27	\$103,000	\$1,000	\$98,076	\$22,308	\$242,571
39	\$115,000	\$1,000	\$103,845	\$25,385	\$265,016
52	\$125,000	\$1,000	\$109,614	\$28,46	\$285,28
67	\$135,000	\$1,000	\$115,383	\$31,539	\$305,546
82	\$145,000	\$1,000	\$121,152	\$34,616	\$325,812
100	\$155,000	\$1,000	\$126,921	\$37,693	\$346,077
115	\$165,000	\$1,000	\$132,690	\$40,770	\$366,342
137	\$175,000	\$1,000	\$138,459	\$43,847	\$386,607
182	\$350,000	\$1,000	\$150,000	\$50,000	\$596,090
364	\$525,000	\$2,000	\$300,000	\$100,000	\$1,001,430
546	\$700,000	\$3,000	\$450,000	\$150,000	\$1,406,770
728	\$875,000	\$4,000	\$600,000	\$200,000	\$1,812,110
911	\$1,050,000	\$5,000	\$750,000	\$250,000	450
	\$1,050,000	\$6,000	\$900,000	\$300,0	\$2.432,

Includes the following: enclosed flare cost (includes stack, control panel, flame arrester, safety shutoff valve, flow meter, and chart recorder), $\$ 1,000$ for propane pilot gas system, tranportation to $C A$ (not taxed), and 9% sales tax
Includes site evaluation, application engineering, and actual installation work.
Includes air district (application \& authority-to-construct fees) and building permits.
Source test for criteria pollutants and CH4 (EPA Method 18) to ensure permit compliance,
Allowance for electrical service work, including line extension and service drop work, etc.
${ }^{6} 182$ MM Btu/Hr. (about 6,000 SCFM) is the largest stock single enclosed flare size; larger sizes assume using multiple flares as required for control.
Ref.: Locke, 2009a, Locke 2009b
5a. Installation of New Collection and Control System--Capital Cost
ncludes site assessment, design and installation of collection and control systems (enclosed flare assumed as control technology choice)
$\begin{array}{ll}2007 \$ & 2008 \$ \\ \$ 18,000 & \$ 18,900\end{array}$

Ref.: U.S. EPA, 2009
5b. Annual Operation \& Maintenance Cost of New Collection and Control System

Cost/ LF acre: Source Test:
$\begin{array}{ll}2007 \$ \\ 4,000 & 2008 \\ 4,200\end{array}$
$2008 \$ \$$
4,200 Cost/ LF acre: ${ }_{\$ 0}$

Ref.: U.S. EPA, 2009
6. Costs to ARB for Enforcement and Outreach Activities

Note: Items 6 a through 6 e are used to calculate the low end of the cost range, 6 f through 6 j are used to calculate the high end of the cost range.
Calculation of ARB Loaded Labor Rate Used for Estimation Purposes (includes benefits, overhead, etc.):
ARB Annual Employee Loaded Cost $=\$ 170,000^{1} \quad$ Number of Employee Production Hours/ $/$ r.: 1,904
nual Employee Loaded Cos
$\$ 170,000 / 1,904=\$ 89.29 / h$.

Ref.: Ford, 2009 ${ }^{1}$

6a. ARB Enforcement--Site Inspections \& Associated Work (low end of cost range)

Assumptions:

1) Six landills located in local air districts w/o delegated LEA authority from ARB will be inspected annually by ARB for enforcement purpose
2) Six landtills located in local air districs wo dee the six landfills are remotely located, requiring additional travel time beyond that tor a typical inspection.
3) A typical inspection is a one-day trip w/o overnight lodging, but includes limited (4hrs.) O / T. $\mathrm{O} / \mathrm{T}=1.5 \mathrm{x}$ normal pay rate.
4) A remote inspection includes two nights' lodging expenses + per-diem and two days for travel.

	MonitoringEquipment						One-Time Eq. Cost \$48,000
	\# of Landfills	it cost	Travel Cost Subtotal	$\begin{gathered} \text { Labor } \\ \text { (hrs./insp.) } \end{gathered}$	Labor Cost		
Typical Inspection:	3	\$80	\$240	14	\$3,750	Annual	Annual
Remote Inspection:	3	\$520	\$1,560	24	\$6,429	Travel Cost	Labor Cost

6b. ARB Enforcement--Design Plan Reviews (low end of cost range)
1ssumptions:

1) Each intial Design Plan review by ARB staff includes 12 hrs. for a site visit.
2) 25% of Design Plans submitted will be updated and resubmitted annually
3) Landfill population is relatively stable over time-- no large increases in the number of landfills.

mia Dosign Pa Roviow	$\begin{array}{r} 30 \text { hours @ } \\ \text { Travel Costs (avg.): } \end{array}$		$89.29 \$ / \mathrm{hr} .=$ Total:	$\begin{array}{r} \$ 2,679 \\ \hline \$ 2,40 \end{array}$		
Updated Design Plan Review ${ }^{1}$:						
		hours @	89.29 \$/hr. =	\$714		
Cost Calculation:					One-Time	One-Time
	\# of Affected	Labor	Subtotal		Travel Cost	Labor Cost
Initial Review:	5	\$2,679	\$13,394		\$1,200	\$13,39
Update Review:	1	\$714	\$714			
						Annual Labor Cost

Ref.: Judge, 2009 ${ }^{1}$

6d. ARB Enforcement--Review of WIP and Heat Calculation Reports (low end of cost range)
Assumptions:
Assumptions: Report review workload is constant over the 23 -year analysis period.
2) Landfill population is relatively stable over time-- no large increases in the number of landfills.

Ge. ARB Implementation--Outreach and Compliance Assistance Activities (low end of cost range)

ssumptions:
Mailout audience is estimated at $218 \times 1.25=273$; this is the 218 potentially afffected CA landfills plus 25% additional to include associated regulator agencies (local air districts (35), CIWMB, RWCB, and EPA), equipment and service providers, and other interested parties.
2) Preparation of 75 -page outreach document for landfills is performed.

Preparation of Outreach Materials

1) 75-page outreach document

ARB Staff Time:
120 hours @
$89.29 \$ / \mathrm{rr} .=$
\$10,715
Reproduction Costs:
(\# of units) (cost/unit) Quantity

Reproduction Costs:					
400 copies $=273+127$ extras	75	$\$ 0.04$	400	$\$ 1,200$	
Mailout:					
covert leter	2	$\$ 0.04$	273	$\$ 22$	
envelope	1	$\$ 0.72$	273	$\$ 197$	
postage (8 0z.) (after 5/09 rate increase)	1	$\$ 2.07$	273	$\$ 565$	
					$\$ 1,984$

envelope
postage (802 .) (atter 5/09 rate increase)
Informational Workshop(s)
Sutreach materials \& staff time costs covered/absorbed in current budget allocation)
Trade Show Attendance
Staft time costs covered/absorbed in current budget allocation.)
ravel- one person/one week
Registration Fees

$\$ 1,200$ $\$ 500$

```
One-Time Non- One-Time
Labor Expenses S2,484}\frac{T\mathrm{ Travel Exp.}}{$2,400
    One-Time
$ Cost
```


Low-End of Cost Range Summary

Annual (Recurring) Costs:	Cost((9)	
ARB Staff Time	\$22,716	
Travel	\$1,800	
	"Low-End Annual Costs to ARB are approximately $\$ 24,500$. "	
One-Time Costs:		
ARB Staff Time	\$24,108	
Travel	\$3,600	
Monitoring Equipment + Mailout Expenses	\$50,484	
	\$78,192	

6f. ARB Enforcement--Site Inspections \& Associated Work (high end of cost range)

1) All California landfills will be inspected annually by ARB for enforcement purposes.
2) Landill population is relatively stable over time-- no large increases in the number of landfills.

Labor Cost

367 Landfills $x 10$ hrs. Staff Time/Landfill $=\quad 3,670 \mathrm{hrs}$.
2 PYs $\times \$ 170,000 /$ PY $^{1}=\$ 340,000$

Monitoring Equipment
 $\frac{\text { Equipment }}{48,000}$

$\frac{\text { Travel }}{\$ 44,040} \underset{ }{\$} \frac{\text { Labor Cost }}{340,000}$
$\begin{gathered}\text { Annual } \\ \text { Travel Cost } \\ \$ 444,040\end{gathered}$
$\begin{gathered}\text { Anual } \\ \text { Labor Cost }\end{gathered}$
$\$ 340,000$
$\frac{\text { Travel Cost }}{40 \% \text { of Inspections on Per-Diem (} \sim 36.7 \text { weeks/yr. for } 2 \text { PYs) }}$
ost for One Week of Travel (5 days, 4 nights)
Lodging Round-Trip Airfare
Car Rental (incl. gas.)

36.7 Travel Weeks/yr. $\times \$ 1,200 /$ week $=\$ 44,040$

Ref.: Ford, 2009 ${ }^{1}$
6g. ARB Enforcement--Design Plan Reviews (high end of cost range)

1) Each intial Design Plan review by ARB staff includes 12 hrs. for a site visit.
2) 25% of Design Plans submitted will be updated and resubmitted annually.
3) Landfill population is relatively stable over time-- no large increases in the number of landfills.

,	$\begin{aligned} & 30 \text { hours @ } \\ & \text { Travel Costs (avg.): } \end{aligned}$		89.29 \$/hr. = Total:	$\begin{gathered} \$ 2,679 \\ \begin{array}{c} \$ 240 \\ \hline \$ 2,919 \end{array} \end{gathered}$		
Updated Design Plan Review ${ }^{1}$:						
	8 hours @		89.29 \$/hr. =	\$714		
Cost Calculation:					One-Time	One-Time
	\# of Affected	$\stackrel{\text { Labor }}{ }$	Review Cost			
	$\frac{\text { Landilils }}{} 146$	Costheview	Subtotal		$\frac{\text { Iravel Cost }}{\$ 35040}$	$\frac{\text { Labor Cost }}{\$ 391,090}$
Update Review:	37	\$714	\$26,073			
						Annual Labor Cost
						\$26,073

Ref.: Judge, 2009¹

6h. ARB Enforcement--Monitoring Data Review (high end of cost range)
Assumptions:
oring data review includes staff time to receive, review, and archive data
) Landfill population is relatively stable over time-- no large increases in the number of landfills.
4) Report review workload is constant over the 23 -year analysis period.

Review Cost per Reporting Cycle (expressed on a per-acre basis):

$$
\begin{aligned}
& \text { acre basis): } \\
& 0.1 \text { hour(s) @ }
\end{aligned} \quad 89.29 \$ / h r .=
$$

Annua
i. ARB Enforcement--Review of WIP and Heat Calculation Reports (high end of cost range)

Assumptions:

1) Report review workload is constant over the 23 -year analysis period.
2) Landfill population is relatively stable over time-- no large increases in the number of landfills.

Number of Reports Expected From Affected Landillls

6j. ARB Implementation--Outreach and Compliance Assistance Activities (high end of cost range)
Mailout audience is estimated at $372 \times 1.25=465$; this is all of the 372 potentially afffected CA landfills plus 25% additional to include associated requlatory agencies (local air districts (35), CIWMB, RWCB, and EPA), equipment and service providers, and other interested parties.
2) Preparation of 75 -page outreach document for landfills is performed.

Preparation of Outreach Materials
(1) 75 -page outreach document
ARB Staff Time:

Reproduction Costs:
500 copies $=465+35$ extras
Mailout:
cover letter
postage (8 oz.) (after $5 / 09$ rate increase)
Informational Workshop(s)
Outreach materials \& staft time costs covered/absorbed in current budget allocation.)
ravel- one person/one week
Trade Show Attendance
taft time costs covered/absorbed in current budget allocation.)
Travel- one person/one week
$\$ 1,200$
$\$ 500$

One-Time Travel Exp.	One-Time Non-
	Labor Expenses
\$2,400	\$3,335
	One-Time Labor Cos

High-End of Cost Range Summary	
	Cost (\$)
Annual (Recurring) Costs:	
ARB Staff Time	\$1,204,940
Travel	\$44,040
"High-End Annual Costs to ARB are approximately 1.2 million dollars."	
One-Time Costs:	
ARB Staff Time	\$401,805
Travel	\$37,440
Monitoring Equipment + Mailout Expenses	\$50,835
	\$490,080 tely $\$ 490,000$

This is the overall cost-effectiveness, where reporting requirement, collection and control system, and monitoring costs are summed and divided by the CO2 reductions attributable to the proposed regulation (emission benefits for landfills in the SCAQMD excluded from the emission reductions listed below.)

1) Cost-Effectiveness of Proposed Regulation

Year ${ }^{1}$	Annual Cost $^{2}(\$)$	Emission Red. (MTCO2E)	Cost-Effectiveness (\$/MTCO2E)
2010	$\$ 6,404,217$	$1,163,439$	5.50 Low
2011	$\$ 11,356,839$	$1,198,633$	9.47
2012	$\$ 14,052,745$	$1,234,336$	11.38 High
2013	$\$ 13,306,546$	$1,270,563$	10.47
2014	$\$ 13,305,574$	$1,307,328$	10.18
2015	$\$ 13,305,151$	$1,344,646$	9.89
2016	$\$ 13,304,856$	$1,382,532$	9.62
2017	$\$ 13,673,947$	$1,421,002$	9.62
2018	$\$ 15,595,468$	$1,460,071$	10.68
2019	$\$ 15,595,341$	$1,499,756$	10.40
2020	$\$ 15,594,456$	$1,540,071$	10.13
2021	$\$ 15,593,819$	$1,581,034$	9.86
2022	$\$ 15,592,974$	$1,622,662$	9.61
2023	$\$ 15,592,424$	$1,664,971$	9.36
2024	$\$ 15,591,659$	$1,707,980$	9.13
2025	$\$ 15,591,404$	$1,751,704$	8.90
2026	$\$ 14,819,906$	$1,796,163$	8.25
2027	$\$ 13,981,754$	$1,841,375$	7.59
2028	$\$ 13,893,086$	$1,887,358$	7.36
2029	$\$ 13,892,536$	$1,934,132$	7.18
2030	$\$ 13,892,114$	$1,981,715$	7.01
2031	$\$ 13,891,986$	$2,030,127$	6.84
2032	$\$ 13,891,604$	$2,079,389$	6.68
2033	$\$ 13,766,863$	$2,129,520$	6.46
	$\$ 335,487,268$	$38,830,509$	8.64

${ }^{1}$ These are the individual years in the analysis period.
${ }^{2}$ Annual costs are the sum of the reporting, collection and control systems improvements, and monitoring costs for all affected CA landfills (including those in the SCAQMD.) Costs are from the Landfills_Reporting_Only and Landfills_Controlled worksheets in this file.
${ }^{3}$ Emission reductions are for all affected CA landfills except for those in the SCAQMD.

5/4/2009

1) Costs for Landfills Subject to Reporting Requirements Only
(projected to have less than 450,000 tons WIP)

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Private LFs:	\$2,989	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$295	\$295	\$295	\$295	\$295	\$295	\$127
Government LFs (all):	\$14,163	\$7,428	\$7,094	\$6,799	\$6,464	\$6,169	\$6,002	\$5,834	\$5,500	\$5,500	\$4,997	\$4,997	\$4,703	\$4,408	\$4,280	\$4,280	\$4,280	\$4,280	\$4,113
Local:	\$11,055	\$4,950	\$4,615	\$4,448	\$4,113	\$3,985	\$3,985	\$3,985	\$3,818	\$3,818	\$3,316	\$3,316	\$3,316	\$3,021	\$2,893	\$2,893	\$2,893	\$2,893	\$2,726
State:	\$295	\$295	\$295	\$295	\$295	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127	\$127
Federa:	\$1,387	\$757	\$757	\$630	\$630	\$630	\$630	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	${ }^{\$ 462}$
Tribal: Miliary:			$\$ 0$ $\$ 1.427$	\$ $\begin{array}{r}\text { \$0 } \\ \$ 1427\end{array}$	$\$ 0$ $\$ 1427$	$\$ 0$ $\$ 1.427$	$\$ 0$ $\$ 1259$	$\$ 0$ $\$ 1259$	$\$ 0$ $\$ 1.092$	$\$ 0$ $\$ 1092$	$\$ 0$ $\$ 1092$	$\$ 0$ $\$ 1092$	\$90	\$90	\$900	\$ 80	\$90	\$80	\$797
Military:	\$1,427 $\$ 17,152$	\$1,427	\$1,427	$\$ 1,427$ $\$ 7,261$	\$6,926	\$ $\$ 1,627$	\$9,2,469	${ }_{\text {\$1,2,297 }}$	\$5,962	\$5,962	\$5,460	\$ 51,460	\$4,997	\$4,703	\$4,575	\$4,575	\$4,575	\$4,575	\$79,240
LFs Subject to WIP Rep. Only:	\$5,356	\$5,356	\$5,022	\$4,854		\$4,687	\$4,520	\$4,352	\$4,352	\$4,352	\$4,017	\$4,017	\$3,850	\$3,683	\$3,683	\$3,683	\$3,683	\$3,683	\$3,348
Subject to Both WIP \& Heat Calc. Repting:	\$11,795	\$2.534	\$2,534	\$2,407 $\$ 7,261$	\$2,239	$\underset{\$ 6,631}{ }$	$\underset{\$ 1,944}{ }$	\$ ${ }_{\text {\$1,944 }}$	\$1,610	${ }_{\text {\$5,962 }}$	\$55,460	\$85,442	\$4, ${ }^{\text {\$1,97 }}$	${ }_{\text {\$4,703 }}$	${ }_{\text {\$4,575 }}$	\$84,575	${ }_{\text {\$4,575 }}$	${ }_{\text {\$4,575 }}$	$\underset{\$ 8,240}{ }$

2) Costs for Landfills Subject to Reporting, Monitoring, and Control Requiremen

		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Private LFs:	Capital Costs	S0	\$288,158	\$505,922	\$505,922	\$505,922	\$505,922	\$505,922	\$505,922	\$541,593	\$541,593	\$541,593	\$541,593	\$541,593	\$541,593	\$541,593	\$541,593	\$253,435	\$35,671	\$35,671
	O\&M Costs	\$0	\$684,400	\$1,225,800	\$1,225,800	\$1,225,800	\$1,225,800	\$1,225,800	\$1,225,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800
	Monitoring Costs	1,857	3,077,983	\$2,860,346	\$2,380,346	\$2,380,346	\$2,380,346	\$2,380,346	\$2,517,230	\$2,469,230	\$2,469,230	\$2,469,230	\$2,469,230	\$2,469,230	\$2,469,230	\$2,469,230	\$2,469,230	\$2,469,230	\$2,469,230	\$2,469,230
	Reporting Costs	\$6,247	\$3,0	\$3,060	\$2,805	\$2,677	\$2,677	\$2,677	\$2,295	\$2,295	\$2,295	\$2,167	\$1,785	\$1,657	\$1,530	\$1,275	\$1,275	\$1,147	\$1,02	\$1,00
		.148,104	,53,602	95,128	14,873	14,745	114,745	14,745	251,24	208,918	208,91	208,790	208,40	208,28	208,153	207,898	207,898	919,61	701,72	\$4,701,721
Govt. LFs:	Capital	\$0	\$483,212	\$1,103,346	\$1,191,297	\$1,191,297	\$1,191,297	\$1,191,2	\$1,191,2	\$1,279,609	1,279,	\$1,279,6	\$1,279,609	\$1,279,	1,279,609	\$1,279,609	\$1,279,609	796,396	176,263	
	08 MC	\$0	\$1,192,840	\$3,739,780	\$3,962,180	\$3,962,180	\$3,962,180	\$3,962,1	\$3,962,180	\$4,982,180	\$4,982,1	\$4,982,	\$4,982,180	\$4,982,	84,982,	\$4,982,	\$4,982,180	\$4,982,180	.982,180	O
	Mon	595	12.4	600,306	\$4,024,306	\$4,024,306	\$4,024,3	.024,306	\$4,257,190	\$4,113,190	\$4,113,19	\$4,113,1	\$4,113,190	\$4,113,190	\$4,113,1	\$4,113,1	\$4,113,190	\$4,113,1	\$4,113,190	0
	Reporting Costs	\$12,367	\$6,8	\$6,629	\$6,629	\$6,120	\$5,992	\$5,865	\$5,737	\$5,610	\$5,482	\$5,227	\$4,972	${ }_{\$ 4,717}$	\$4,590	\$4,207	\$3,952	${ }_{\text {\$3,952 }}$	\$3,825	,442
		\$4,238,961	\$7,295,346	\$9,450,061	\$9,184,412	\$9,183,902	\$9,183,775	\$9,183,647	\$9,416,404	\$10,380,588	\$10,380,461	\$10,380,206	\$10,379,951	\$10,379,696	\$10,379,568	\$10,379,186	\$10,378,931	\$9,895,719	\$9,275,458	¢9,187,124
Recurring Costs (all): Annualized Cap. Cost:		87,065	\$10,577,57	\$12,435,921	\$11,602,066	\$11,601,429	\$11,601,302	\$11,601,17	\$11,970,	\$13,768,305	\$13,	\$13,7	\$13,767	\$13,7	\$13,766,520	\$13,765,882	\$13,765,627	\$13,765,500	3,765,245	3,76
		\$0	\$771,37	\$1,609,268	\$1,697,218	\$1,697,218	\$1,697,218	\$1,697,218	\$1,697,218	\$1,821,202	\$1,821,2	\$1,821,2	\$1,821,202	\$1,821,202	\$1,821,2	\$1,821,202	\$1,821,202	\$1,049,831	\$211,934	\$123,983
Subtotals:	Capita	so	571,371	\$1,609,268	\$1,697,218	\$1,697,218	\$1,697,218	\$1,697,218	\$1,697,218	\$1,821,202	\$1,821,202	\$1,821,202	\$1,821,202	\$1,821,202	\$1,821,202	\$1,821,202	\$1,821,202	\$1,04,831	\$211,934	\$123,983
	O\&M		\$1,877,240	\$4,965,580	\$5,187,980	\$5,187,980	\$5,187,980	\$5,187,980	\$5,187,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980
	Monitoring Costs	\$6,368,451	\$8,690,393	\$7,460,652	\$6,404,652	\$6,404,652	\$6,404,652	\$6,404,652	\$6,774,420	\$6,582,420	\$6,582,420	\$6,582,420	\$6,582,420	\$6,582,420	\$6,582,420	\$6,582,420	\$6,582, 420	\$6,582,420	\$6,582,420	\$6,582,420
	Reporting Costs	\$18,614	99.944	\$9,689	99,434	\$8,797	\$8,669	¢8,542	\$8,032	\$7,904	\$7,777	\$7,394	¢6,757	\$6,375	\$6,120	\$5,482	\$5,227	\$5,100	\$4,845	\$4,46

) Reporting Costs for All Landifils
Reporting Only LFs:
Governmestivonitoring LFs:
Private
Privale
Government:
Total (all):

2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
\$2,989	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$462	\$295	295	\$295	\$295	295	295	\$127
\$14,163	\$7,428	\$7,094	\$6,799	\$6,464	\$6,169	\$6,022	\$5,834	\$5,500	\$5,500	\$4,997	\$4,997	\$4,703	\$4,408	\$4,280	\$4,280	\$4,280	\$4,280	
\$17,152	\$7,891	\$7,556	\$7,261	\$6,926	\$6,631	\$6,464	\$6,297	\$5,962	\$5,962	\$5,460	\$5,460	\$4,997	\$4,703	\$4,575	\$4,575	\$4,575	\$4,575	\$4,240
\$6,247	\$3,060	\$3,060	\$2,805	\$2,677	\$2,677	\$2,677	\$2,295	\$2,295	\$2,295	\$2,167	\$1,785	\$1,657	\$1,530	\$1,275	\$1,275	\$1,147	\$1,020	\$1,02
\$12,367	\$6,884	\$6,629	\$6,629	\$6,120	\$5,992	\$5,865	\$5,737	\$5,610	\$5,482	\$5,227	\$4,972	\$4,717	\$4,590	\$4,207	\$3,952	\$3,952	\$3,825	\$3,44
\$18,614	\$9,944	\$9,689	\$9,434	\$8,797	\$8,669	\$8,542	\$8,032	\$7,904	\$7,777	\$7,394	${ }_{\text {¢6,757 }}$	\$6,375	\$6,120	\$5,482	\$5,227	\$5,100	\$4,845	\$4,46
\$35,765	\$17,835	\$17,245	\$16,695	\$15,723	\$15,301	\$15,006	\$14,328	\$13,866	\$13,739	\$12,854	\$12,217	\$11,372	\$10,822	\$10,057	\$9,802	\$9,675	\$9,420	\$8,702

Total Cost of Regulation to Aftected Ladiflls

Annual Totals:
5) Cost Per California Household Calculation

Total Cost of Prop. Reg. Div. by \# of CA Housenolds: $\$ 26$
Cost CA Household Div. by \# of Months in Analysis Period:

2029	2030	2031	2032	2033	Totals
\$35,671	\$35,671	\$35,671	\$35,67	\$0	\$8,123,8
\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$2,195,800	\$43,172,000
\$2,469,230	\$2,469,230	\$2,469, 230	\$2,469,230	\$2,469,230	\$59,626,482
$\$ 892$	$\$ 892$	8765	$\$ 765$	$\$ 765$	7,044
\$4,701,594	701,594	701,466	\$4,701,466	\$4,665,795	\$110,969,421
\$4,982,180	\$4,982,180	\$4,982,180	\$4,982,180	\$4,982,180	\$104,458,400
\$4,113,190	\$4,113,190	\$4,113,190	\$4,113,190	\$4,113,190	\$100,604,768
\$3,315	\$3,187	\$3,187	\$2,805	\$2,677	\$121,370
, 18,997	186,869	186,86	186,48	,98,04	\$224,378,669
\$13,764,607	\$13,764,480	\$13,764,352	\$13,763,970	763,842	\$308,030,064
\$123,983	\$123,983	\$123,983	\$123,983	\$0	\$27,318,026
\$123,983	\$123,983	\$123,983	\$123,983	\$0	\$27,318,026
\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$7,177,980	\$147,630,400
,582,420	\$6,582,420	\$6,582,420	\$6,582,420	\$6,582,420	\$160,231,250
\$4,207	\$4,0	\$3,952	\$3,570	\$3,442	\$168.414

