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Background and Motivation

An increasing epidemiological and toxicologicalaamce links
cardio-respiratory health effects and exposuresttafine particles
(Peters et al., 1997; Li et al., 2002 and 2003;eXial., 2004)

Emission inventories suggest tmabtor vehicles may be the primary
emission sources of ultrafine partictesthe atmosphere in urban
areas (Hitchins et al., 2000; Zhu et al, 2002)

Newerafter treatment technologibave been developed to capture
non-volatile fractiorof exhaust emissions.

However, theieffectiveness in removing the semi-volatile fractod
PM remains unclear

This is a multi-year collaborative project to intigate the
physicochemical and toxicityf thevolatile fractionof emissions
from newer diesel vehicles

This presentation summarizes thteysical propertiesef PM _
emissions from test heavy-duty diesel trucks compeéo abaseline
vehicle and preliminary chemical and toxicologiezgults
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Experimental Setup
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Test Matrix — 1/2

4 vehicles, 7 configurations, 3 driving cycles
Vehicle Af ter-treatment Abbreviation
NA Baseline

CRT®

1998 Cummins Diese _-.u 2 B v-scrm
11L, 360,000 miles,

20,000 mi 20,000 mi

BASELINE VEHICLE

i Orxicd
o lalmm  Z-SCRT®*

30,000 mi 0 mi

O
Q
C

*SCRT® systems used in this project are development protot ypes, not
commercial units .
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Test Matrix - 2/2

4 vehicles, 7 configurations, 3 driving cycles
Veh#2, 1999 International Diesel

. DPX
7.6L, 40,000 miles
Veh#3 2003 Cummins Diesel,
5.9L, 50,000 miles
Veh#4 2006 Cummins Diesel w/ Allison Hybrid drive
Hybrid-
d CCRT®

5.9L, 1,000 miles
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Chemical and Toxicological Analysis Plan

U Wisconsin-M adison UCLA-RIVM
Samplers
IC EC/OC Organics Metals ROS DTT DHBA
NanoMOUDI v v v
USC Hi-Vol v v v v v v
Thermo
denuded v v v v v v

filters
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Particle Number Size Distribution (1)
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dN/dlogDp
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dN/dlogDp
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Particle Number Size Distribution (3)

Non-Nucleating Vehicles
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particles formed atigh
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Also note themuch lower
number emissiofactors of
theHybrid and EPF
vehiclescompared to other
test vehicles

Baselinetruck high
concentrations and peak
accumulation mode
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Mass PM emission rates for baseline vehicle are 20- 100 times higher than
those of the rest of the tested fleet
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Number vs Mass Emission Factors (EF)
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R = Ng,haust / Ntp = Ratio of volatile/ non volatile number of particles
- Ng,haust = TOtal dilution corrected particle concentration

- Ntp = number concentration measured by CPC after the thermo-denuders.

1.E+05 , | | | .
V-SCRT® | Z-SCRT® | OPX® Hybrid- | EPF | CRT@ 1| Baseline
|
' | GCRT®, : .
1.E+04 EmTois0 OTD 230 : - : : e ,
1
— i I | | | I |
= I | N | | : |
-% I I | | | |
g e ]
1
:I: I | | | : |
21.E+D2- ! i o ! :
g= : | [ I : |
I
: il 1 ]
i
I : | I I:I .
| | | I I .
-1-E+|:|I:| 1 1 J_I I! 1 II 1 If| II i II i 1 II T II-_| 1 J_| 1
v oW W T oW T oW L oW LW T ow L oW D
L] O =, A Ol i) O =, Ol A O i ] Aa O =,
o o o c o = O L. o g2 o g o = 9o G
§ 3> 6 236 3% 26596 50 2 ¢
- = NN X X I b W = e i) v g
e & ° § & o x x £ £ 32
+ n
m m
Cycle

Particle Volatility (by Number) of Various Vehicles and Driving Cycles



University of Southern California

EF (mg km™)
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* Nucleation mode PM from vehicles
with catalytic reduction mostly
ammonium sulfate and TC (to a lesser
degree)

» Higher emissions in UDDS, except

» Higher emissions in cruise mode __ of
nucleation mode PM for SCRT vehicles
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* On a per km basis, the baseline vehicle has the hig  hest PM redox activity;

 However, the redox activity reduction by after-treatment technologies is highly non
linear with respect to their PM mass emission rates
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DTT activity expressed per PM mass; note the very high activity of some of the reduced
mass emission trucks, especially with non-catalyzed silicon carbide (CRT) substrate for PM

control




Redox Activity (DTT assay) dbemivolatileand

from Newer Diesel Trucks
Samplesincluding semivolatile PM
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DTT rate of consumption per PM mass (nmalgd?M/min) ismuch
higher when the semi-volatilefraction isincluded




I Relationship between toxicity and volatile PM fract  ion
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SUMMARY AND CONCLUSIONS

e Substantial reductions in the emission rates of PM mass were achieved
with newer vehicles or those operating with after t reatment technologies

* Increase in the emission rates of particle numbers by almost every
vehicle operating with after treatment

 PM produced by enhanced nucleation are a mixture of partially or fully
neutralized ammonium sulfate and organic carbon

« Substantial reduction in the overall redox activity of PM was achieved
with newer vehicles on a per km driven basis

* Nonetheless, several newer vehicles had a higher redox activity on a PM
mass basis

 The semi volatile fraction of PM (with the exception of baseline vehicle)
was responsible for over 80% of the total redox activity  of the exhaust

 |n addition to the in vitro evaluations, In vivo studies to semi volatile and
non volatile PM are necessary (issue of inhaled dos  e), and are currently
under way



